K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)

23 tháng 6 2019

DK: a,b thuoc N, a > 0

\(\overline{a0b}=100a+b⋮7\)

\(\Rightarrow4.\left(100a+b\right)⋮7\)

\(\Rightarrow400a+4b⋮7\)

\(\Rightarrow a+4b⋮7\text{ vi }399a⋮7\)

\(\)

30 tháng 11 2016

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

11 tháng 11 2016

em cam on thay a

29 tháng 3 2019

Bạn xét $x=7k,7k\pm 1,7k\pm 2,7k\pm 3$ được kq là số chính phương chia 7 thì chia hết hoặc số dư là 1,2,4$\Rightarrow a^2+b^2\vdots 7\Leftrightarrow a,b\vdots 7$

29 tháng 3 2019

Vì a2, b2 là các scp nên chia 7 dư 0, 1, 2 hoặc 4.

Mà a2 + b2 chia hết cho 7 nên a2, b2 đều chia hết cho 7

\(\Rightarrow\) a và b đều chia hết cho 7 (đpcm)

a hình như lộn đề 

b. a = - ( b + c)

\(\Leftrightarrow a^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3=-\left(b^3+3.ab^2+3.a^2b+b^3\right)\)

\(\Leftrightarrow a^3=-b^3-3cb^2-3c^2b-b^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=-3bc.-a=3abc\)

chỗ nào ko hiểu gửi thư mik , gửi lun cái đề câu a nhá ^^