K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)

23 tháng 6 2019

DK: a,b thuoc N, a > 0

\(\overline{a0b}=100a+b⋮7\)

\(\Rightarrow4.\left(100a+b\right)⋮7\)

\(\Rightarrow400a+4b⋮7\)

\(\Rightarrow a+4b⋮7\text{ vi }399a⋮7\)

\(\)

20 tháng 1 2019

a) Do 20a + 11b chia hết cho 17 => 5.(20a + 11b)

=> 100a+55b chia hết cho 17

=>(83a + 38b) + 17a + 17b chia hết cho 17

Vì 17a chia hết cho 17 với mọi a thuộc N   (1)   

17b chia hết cho 17 với mọi b thuộc N            (2)           

10.(20a+11b) chia hết cho 17 (như trên)   (3)           

Từ (1), (2), (3) => 83a + 38b chia hết cho 17. (tính chất chia hết của một tổng)

b) Do 2a + 3b + 4c chia hết cho 7 => 10.(2a + 3b + 4c) chia hết cho 7

=> 20a + 30b + 40c chia hết cho 7

=> (13a + 2b - 3c) + 7a + 28b + 7c chia hết cho 7

Mà 7a chia hết cho 7 với mọi a thuộc N

28b chia hết cho 7 với mọi b thuộc N

7c chia hết cho 7 với mọi c thuộc N

=> 13a + 2b -3c chia hết cho 7

Vậy...

25 tháng 3 2016

Nhóm các hạng tử của tổng đã cho theo dạng sau:

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

     \(=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

     \(=\left(7+7^2+7^3+7^4\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)

     \(=7\left(1+7+7^2+7^3\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)

\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}\right)=7.400.B\)

Vậy,   \(A\)  chia hết cho  \(400\)

NV
21 tháng 3 2023

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\left(n-1\right)\left(n+3\right)\)

\(\Rightarrow A\) là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7