Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 10n +18n -1 = (10n-1)+18n = 999...9 +18n (n chữ số 9)
= 9(1111...111 +2n)chia hết cho 9 (n chữ số 1)
Đặt B = 111...111+2n = 111...111 - n +3n
Tổng các chữ số của 111...111 là n
=> B=111...111 - n +3n chia hết cho 3
=> A chia hết cho 3
Vì (3,9)=1 => A chia hết cho 27
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Như vậy cũng hơi tắt. Nhưng mà **** cho tôi đi. Bai này có công thức đấy.
\(\frac{a}{b}
Câu hỏi của doraemon - Toán lớp 6 - Học toán với OnlineMath
Câu a)
n + 6 chia hết cho n
=> 6 chia hết cho n
=> n = { 1 ; 2 ; 3 ; 6 }
Câu b)
15 chia hết cho 2n + 1
=> 2n + 1 = { 1 ; 3 ; 5 ; 15 }
=> n = { 0 ; 1 ; 2 ; 7 }
gọi 2 số cần tìm là abc và def
ta có ;
abcdef = abc000 + def
=100abc + def
=1001abc + ( def - abc )
vì 1001 chia hết cho 13 suy ra 1001abc chia hết cho 13 suy ra 1001abc + (def-abc)chia hết cho 13
theo nguyên lý di-rich-le thì luôn luôn có 2 số mà khi viết liền nhau sẽ tạo thành số có 6 chữ số chia hết cho 13.
MÌNH KO CHẮC CHẮN LẮM ĐÂU ĐÓ !!!
Chứng minh quy nạp \(A=10^n+18n-1\) chia hết cho 27 (1)
+n = 1; A = 27⋮27
+Giả sử (1) đúng với n = k (k ≥ 1); tức là 10k + 18k - 1⋮27
+Ta chứng minh (1) đúng với n = k+1, tức là chứng minh 10k+1 + 18(k+1) - 1⋮27.
Thật vậy, ta có: 10k+1 + 18(k+1) - 1 = 10.10k + 18k + 17 = 27.10k - 17(10k + 18k - 1) +324k = 27(10k + 12) - 17.(10k + 18k - 1)
Mà 10k + 18k - 1⋮27 (giả thiết quy nạp) và 27(10k + 12)⋮27
Nên 10k+1 + 18(k+1) - 1⋮27.
Theo nguyên lí quy nạp, ta có điều phải chứng minh.
còn cách khác dễ hơn nhiều