Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử \(\sqrt{a}\)hữu tỉ,a ko chính phương
\(\Rightarrow\sqrt{a}=\frac{a}{b}\left(b\ne0\right)\Leftrightarrow n=\frac{a^2}{b^2}\)
\(\Leftrightarrow a^2=n\times b^2\)
mà a2,b2 là số chính phương
=>n chính phương (sai giả thiết)
=>n ko chính phương =>\(\sqrt{a}\)vô tỉ (Đpcm)
Giả sử nếu a không phải là số chính phương thì\(\sqrt{a}\) là số hữu tỉ
\(\Rightarrow\sqrt{a}=\frac{m}{n}\) \(\left(m;n\right)=1\)
Do a không phải là số chính phương nên\(\frac{m}{n}\notin N\)
\(\Rightarrow n>1\)
\(\Rightarrow m^2=n^2.a\)
gọi P là ước nguyên tố nào đó của n
\(m^2\)chia hết cho a ; \(n^2\)chia hết cho a (trái với điều kiện ở trên là m và n nguyên tố cùng nhau)
Vậy nếu a không phải là số chính phương thì\(\sqrt{a}\) là số vô tỉ
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau)
=>(m/n)^2=2
=>m^2=2n^2
=>m^2 chia hết cho 2
=>m chia hết cho 2
Đặt m=2k (k thuộc Z)
=>(2k)^2=2n^2
=>2k^2=n^2
=> n^2 chia hết cho 2
=> n chia hết cho 2.
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.
Giả sử \(\sqrt{a}\) là số hữu tỉ thì nó viết được dưới dạng:
\(\sqrt{a}\) = \(\dfrac{m}{n}\) với m,n \(\in\)N, (m,n) = 1
Do a không là số chính phương nên \(\dfrac{m}{n}\) không là số tự nhiên , do đó n > 1
Ta có:
m2= a.n2.
Gọi p là ước nguyên tố nào đó của n , thì m2\(⋮\) p , do đó m \(⋮\) p . Như vậy p là ước nguyên tố của m và n, trái với (m,n)=1
Vậy \(\sqrt{a}\) phải là số vô tỉ
Giả sử \(\sqrt{a}\) là số hữu tỉ .
Đặt \(\sqrt{a}=\dfrac{x}{y}\) [\(x;y\in N\),\(y\ne0\) và \(\left(x;y\right)=1\)]
\(\Rightarrow a=\dfrac{x^2}{y^2}\Rightarrow a\cdot y^2=x^2\)
Vì x2 là 1 số chính phương nên a.y2 viết được dưới dạng tích của các số với lũy thừa bằng 2
Mà x; y nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)
=> Giả thiết này sai
=>\(\sqrt{a}\) là 1 số vô tỉ
Giả sử \(\sqrt{a}\) là số hữu tỉ .
Đặt \(\sqrt{a}=\frac{p}{q}\) (p; q \(\in\) N; q khác 0 và (p;q) = 1)
=> \(a=\frac{p^2}{q^2}\) => a.q2 = p2
Vì p2 là số chính phương nên a.q2 viết được dưới dạng tích của các số với lũy thừa bằng 2
Mà p; q nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)
=> Điều giả sử sai
Vậy \(\sqrt{a}\) là số vô tỉ
Giả sử √a không là số vô tỉ => √a là số hữu tỉ
Đặt \(\sqrt{a}=\frac{m}{n}\) (m, n ∈ N), (m, n) = 1
(Vì a không là SCP => n > 1)
\(\Rightarrow a=\frac{m^2}{n^2}\Rightarrow m^2=an^2\) (*)
Gọi p là ước nguyên tố nào đó của n.
Kết hợp với (*) => m2 ⋮ p => m ⋮ p (vì p là số nguyên tố)
Có m và n ⋮ p. Điều này trái với (m, n) = 1
=> Điều giả sử là sai.
Vậy √a với a là STN không chính phương là 1 số vô tỉ.
Giả sử \(\sqrt{a}\)là số hữu tỉ
Đặt \(\sqrt{a}=\frac{y}{x}\)
Giả sử, \(\sqrt{a}\)là 1 số hữu tỉ :
\(\Rightarrow\sqrt{a}=\frac{p}{q}\)với ( p; q ) = 1
\(\Rightarrow a=\left(\frac{p}{q}\right)^2\)
\(\Rightarrow a=\frac{p^2}{q^2}\)
\(\Rightarrow a\times q^2=p^2\)
\(\Rightarrow a\) là Số chính phương ( Mâu thuẫn với đề bài )
Vậy, điều giả sử là sai !
Vậy nếu \(a\) không phải là Số chính phương thì \(\sqrt{a}\) là Số vô tỉ
ĐK: \(a\inℕ\)
Giả sử \(\sqrt{a}=\frac{m}{n}\) \(\left(UCLN\left(m,n\right)=1\right)\)
Khi đó \(a^2=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\)
Do a là số tự nhiên nên a2 là số tự nhiên nên \(m^2⋮n^2\)suy ra \(m⋮n\) hay \(UCLN\left(m,n\right)=n\) trái với giả sử \(UCLN\left(m,n\right)=1\)
\(\Rightarrow\) a là số vô tỉ
Hoặc cách khác:
ĐK: a không phải là số chính phương
Suy ra \(a^2\) là số chính phương. Và:\(\sqrt{a^2}=a\) (là một số tự nhiên)
Mặt khác: \(\sqrt{a}\ne a\)
Do vậy \(\sqrt{a}\) là số vô tỉ