K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì a∈Za∈Z nên suy ra, ta có các trường hợp sau:

+)TH1:a=3k(k∈Z):+)TH1:a=3k(k∈Z):

Ta có:(a–1).(a+2)+12=(3k–1).(3k+2)+12(a–1).(a+2)+12=(3k–1).(3k+2)+12

Vì (3k–1).(3k+2)(3k–1).(3k+2) không chia hết cho 3,123,12 chia hết cho 33 nên suy ra:

(3k–1).(3k+2)+12(3k–1).(3k+2)+12 không chia hết cho 33

=>(3k–1).(3k+2)+12=>(3k–1).(3k+2)+12 không chia hết cho 9(1)9(1)

+)TH2:a=3k+1(k∈Z):+)TH2:a=3k+1(k∈Z):

Ta có:(a–1).(a+2)+12=3k.(3k+3)+12=9.k.(k+1)+12(a–1).(a+2)+12=3k.(3k+3)+12=9.k.(k+1)+12

Vì 9.k.(k+1)9.k.(k+1) chia hết cho 9,129,12 không chia hết cho 99 nên suy ra:

9.k.(k+1)+129.k.(k+1)+12 không chia hết cho9(2)9(2)

+)TH3:a=3k+2(k∈Z):+)TH3:a=3k+2(k∈Z):

Ta có:(a–1).(a+2)+12=(3k+1).(3k+4)+12(a–1).(a+2)+12=(3k+1).(3k+4)+12

Vì (3k+1).(3k+4)(3k+1).(3k+4) không chia hết cho 3,123,12 chia hết cho 33 nên suy ra:

(3k+1).(3k+4)+12(3k+1).(3k+4)+12 không chia hết cho 33

=>(3k+1).(3k+4)=>(3k+1).(3k+4) không chia hết cho 9(3)9(3)

Từ (1),(2),(3)(1),(2),(3) suy ra: (a–1).(a+2)+12(a–1).(a+2)+12 không chia hết cho 9

=>(a–1).(a+2)+12=>(a–1).(a+2)+12 không phải là bội của 9.

3 tháng 6 2016

Câu a :

Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9  

Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .

Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .

Ta có :  A = (n-1 ) (n+2) + 12

 A = n x n + n x 2 - n - 2 + 12  

A = n x n + n + 10  A = n x (n + 1) + 10  

A - 10 = n x (n + 1)  

Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .

Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :

A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .  

Vậy A - 10 = n x (n + 1) không chia hết cho 9 .

Hay (n-1 ) (n+2) + 12 không chia hết cho 9

Câu b :

Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49  

Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.  

Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :  

A = ( n + 2 ) ( n +9 ) + 21  

A = n x n + 9 x n + 2 x n + 18 + 21  

A = n x n + 11 x n + 39  

A - 39 = n x ( n + 11)  

Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên  

A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49  

Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

Nguồn :Toán Tiểu Học Pl

3 tháng 6 2016

b)

Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49

Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.

Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :

A = ( n + 2 ) ( n +9 ) + 21

A = n x n + 9 x n + 2 x n + 18 + 21

A = n x n + 11 x n + 39

A - 39 = n x ( n + 11)

Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên

A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

`Sao hổng có ai trl z

24 tháng 10 2019

hổng ai trả lời vì bài khó qué ^^

26 tháng 1 2016

1a)Tacó:12 ko chia hết cho 9

=>(a-1).(a+2) ko chia hết cho 9

=>(a+1).(a+2)+12 ko chia hết cho 9

 

Câu b giải giống như câu a nhé!!!!!!!!!!!!!!!!

Ai làm nhanh nhất mk cho 5 T.I.C.K