K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

a ) \(VT=\left(x+y+z\right)^2-\left(x-y-z\right)^2\)

\(=\left(x+y+z-x+y+z\right)\left(x+y+z+x-y-z\right)\)

\(=4x\left(y+z\right)=VP\)

b ) \(VT=\left(2a+b\right)^2-\left(a+b\right)^2-3a^2\)

\(=\left(2a+b-a-b\right)\left(2a+b+a+b\right)-3a^2\)

\(=a\left(3a+2b\right)-3a^2\)

\(=3a^2+2ab-3a^2=2ab=VP\)

13 tháng 8 2017

a) \(\left(x+y+z\right)^2-\left(x-y-z\right)^2=4x\left(y+z\right)\)

\(\Rightarrow x^2+y^2+z^2+2xy+2xz+2yz-\left(x^2+y^2+z^2-2xy-2xz+2yz\right)=4x\left(y+z\right)\)\(\Rightarrow x^2+y^2+z^2+2xy+2xz+2yz-x^2-y^2-z^2+2xy+2xz-2yz=4x\left(y+z\right)\)\(\Leftrightarrow4xy+4xz=4x\left(y+z\right)\)

\(\Leftrightarrow4x\left(y+z\right)=4x\left(y+z\right)\).

b) \(\left(2a+b\right)^2-\left(a+b\right)^2-3a^2=2ab\)

\(\Rightarrow\left(2a\right)^2+2.2a.b+b^2-\left(a^2+2ab+b^2\right)-3a^2=2ab\)

\(\Rightarrow4a^2+4ab+b^2-a^2-2ab-b^2-3a^2=2ab\)

\(\Leftrightarrow2ab=2ab\)

30 tháng 12 2016

a.)(x+y+z)^2-(x-y-z)^2

=(x+y+z-x+y+z)(x+y+z+x-y-z)

=(2y+2z)2x

=2(y+z)2x

=4x(y+z)

b.) (2a+b)^2-(a+b)-3a^2

=4a^2+4ab+b^2-a-b-3a^2

=a^2+4ab+b^2-a-b

hình như đề sai thì phải hay sao ấy bạn 

30 tháng 12 2016

uk cn b chép thiếu bạn ạ

10 tháng 7 2016

Bài 1:

  • a,(2+xy)^2=4+4xy+x^2y^2
  • b,(5-3x)^2=25-30x+9x^2
  • d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
16 tháng 6 2015

Em làm thử nếu sai thì thôi ạ (vì mới học lớp 6)

a) 

Ta có:

\(\left(a+b\right)^2-\left(a-b\right)^2=a^2.b^2-a^2:b^2\)

\(=a^2.b^2-a^2.\frac{1}{b^2}=a^2.\left(b^2-\frac{1}{b^2}\right)\)

Chắc thế ạ, em chỉ làm 1 phần vì sợ sai

 

16 tháng 6 2015

a)(a+b)2-(a-b)2=(a+b+a-b)(a+b-a+b)=2a.2b=4ab

b)(a+b)3-(a-b)3-2ab3

=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]-2ab3

=2a(a2+2ab+b2+a2-b2+a2-2ab+b2)-2ab3

=2a(3a2+b2)-2ab3

=6a3+2ab2-2ab3

c)(x+y+z)2-2(x+y+z)(x+y)+(x+y)2

=(x+y+z-x-y)2=z2

1 tháng 1 2018

ChươngII *Dạng toán rútg gọn phân thức

Bài 1.Rút gọn phân thức

a. \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}=\dfrac{-3x\left(x-1\right)}{2\left(x-1\right)}=-\dfrac{3x}{2}\)

b.\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x.2xy^2}{4y^3.2xy^2}=\dfrac{3x}{4y^3}\)

c.\(\dfrac{23\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\dfrac{23\left(x-z\right)}{6}\)

1 tháng 1 2018

Bài 2 rút gọn các phân thức sau:

a.\(\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\dfrac{x+4}{x}\)(x khác 0,x khác 4)

b.\(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

( x \(\ne-3\) )

c.\(\dfrac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+y\right)}{y}\) (y+(x+y) khác 0)

d. \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{4}{5}\)

(x khác y)

e.\(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)

(x khác -y)

f.\(\dfrac{x^2-xy}{3xy-3y^2}=\dfrac{x\left(x-y\right)}{3y\left(x-y\right)}=\dfrac{x}{3y}\)(x khác y,y khác 0)

g.\(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}=\dfrac{2a\left(x^2-2x+1\right)}{-5b\left(x^2-1\right)}=\dfrac{2a\left(x-1\right)^2}{-5b\left(x-1\right)\left(x+1\right)}=\dfrac{2a\left(x-1\right)}{-5b\left(x+1\right)}\)

\ (b khác 0,x khác +-1)

h. \(\dfrac{4x^2-4xy}{5x^3-5x^2y}=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4x}{5x^2}\)

(x khác 0,x khác y)

i.\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)

(x+y+z khác 0)

k.\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

(x khác 0,x khác +-y)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????