Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2n+5)2-25
=(2n+5)2-52
=(2n+5-5) x ( 2n+5+5)
=2n x ( 2n+10)
=4n x (n+5)
vì 4n chia hết cho 4 nên 4n x (n+5) chia hết cho 4
vậy (2n+5)2-25 chia hết cho 4
Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.
=>x^3+2x^2+2x^2+4x-5x-10+7 chia hết cho x+2
=>\(x+2\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{-1;-3;5;-9\right\}\)
3x(x+5)-2x-10=0
<=>3x(x+5)-(2x+10)=0
<=>3x(x+5)-2(x+5)=0
<=>(3x-2)(x+5)=0
<=>\(\hept{\begin{cases}3x-2=0\\x+5=0\end{cases}}\)<=>\(\hept{\begin{cases}x=\frac{2}{3}\\x=\left(-5\right)\end{cases}}\)
vậy tập nghiệm cua phương trình là S={\(\frac{2}{3};-5\)}
2x2+x-18 chia hết cho x-3
2x2-6x+6x+x-18
2x(x-3)+6(x-3)+x chia hết cho x-3
(2x+6)(x-3)+(x-3)+3 chia hết cho x-3
=>3 chia hết cho x-3 hay x-3EƯ(3)={1;-1;3;-3}
=>xE{4;2;6;0}
mk k biết biến đổi lp 8 thế này đã được chưa
Cô hướng dẫn nhé, các bài này ta đều dùng hằng đẳng thức đáng nhớ để giải. Cụ thể ở bài này ta dùng hai hằng đẳng thức:
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\) và \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
Ví dụ câu a, các câu khác tương tự:
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004.\left(2005^2+2006\right)\) chia hết 2004.
Ta có :
\(35^6-35^5=35\left(35-1\right)=35\cdot34\)
Vì \(34⋮34\) => \(35\cdot34⋮34\)
Vậy 356 - 355 chia hết cho 34
chịu••••....