K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

3^5^2001-3=3^10005-3=((3^4)^2501).3 - 3

Vì 3^4 có chữ số tận cùng là 1 nên ((3^4)^2501) có chữ số tận cùng là 1.

((3^4)^2501).3 có chữ số tận cùng là 3

((3^4)^2501).3 - 3 có chữ số tận cùng là 0

Vậy ...

21 tháng 6 2016

3^5^2001-3=3^10005-3=((3^4)^2501).3 - 3

Vì 3^4 có chữ số tận cùng là 1 nên ((3^4)^2501) có chữ số tận cùng là 1.

((3^4)^2501).3 có chữ số tận cùng là 3

((3^4)^2501).3 - 3 có chữ số tận cùng là 0

Vậy ...

31 tháng 7 2017

d) Giải:

Ta có: \(\left\{{}\begin{matrix}2222\equiv-4\left(\text{mod }7\right)\\5555\equiv4\left(\text{mod }7\right)\end{matrix}\right.\)

\(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}\) \(+4^{2222}\)

\(\equiv-4+4=0\left(\text{mod }7\right)\)

\(\left(-4\right)^{5555}+4^{2222}=\left(-4\right)^{2222}\left(4^{3333}-1\right)\) \(⋮4^3-1=63⋮7\)

Vậy \(2222^{5555}+5555^{2222}⋮7\)

22 tháng 12 2014

11^10-1

=(...1)-1

=(..0) chia hết cho 10

1 tháng 3 2015

ê mấy bn đề bài bảo chứng mik chia hết cho 100 mà

 

Bài 3: 

a: \(3^x=243\)

nên \(3^x=3^5\)

hay x=5

b: \(x^5=32\)

nên \(x^5=2^5\)

hay x=2

c: \(x^6=729\)

\(\Leftrightarrow x^2=9\)

=>x=3 hoặc x=-3

Câu hỏi của Lưu Vũ Hoàng - Toán lớp 7 - Học toán với OnlineMathTrả lời :a, 2^1 + 3^5 + 4^9 + ... + 2003^8005 : 5Ta có : 2 đồng dư 2 ( mod 10 )3 đồng dư 3 ( mod 10 )...................................2003 đồng dư 2003 ( mod 10 )=> 2^1 + 3^5 + 4^9 + ... + 2003^8005 đồng dư 2 + 3 + 4 + ... + 2003 ( mod 10 )                                                      đồng dư 2007005 ( mod 10 )                                                      đồng dư 5 ( mod...
Đọc tiếp

Câu hỏi của Lưu Vũ Hoàng - Toán lớp 7 - Học toán với OnlineMath

Trả lời :

a, 2^1 + 3^5 + 4^9 + ... + 2003^8005 : 5

Ta có : 2 đồng dư 2 ( mod 10 )

3 đồng dư 3 ( mod 10 )

...................................

2003 đồng dư 2003 ( mod 10 )

=> 2^1 + 3^5 + 4^9 + ... + 2003^8005 đồng dư 2 + 3 + 4 + ... + 2003 ( mod 10 )

                                                      đồng dư 2007005 ( mod 10 )

                                                      đồng dư 5 ( mod 10 )

Hay 2^1 + 3^5 + 4^9 + ... + 2003^8005 chia hết cho 5

b, Đặt A = 2^3 + 3^7 + 4^11 + ... + 2003^8005 

Mọi lũy thừa trong A đều có dạng n4(n-2)+3 

=> n thuộc { 2 ; 3 ; ... ; 2003 }

Áp dụng t/c 3 thì 2^3 có c/s tận cùng là 2 , 3^7 có c/s tận cùng là 7 ; ...

=> C/s tận cùng của A là : ( 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9 ) + 199( 1 + 8 +7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9018

Vậy A chia 5 dư 3

 

0
7 tháng 1 2018

Ai làm hộ mk ik mk mơn nhìu 😘😘

7 tháng 1 2018

^ la gi

7 tháng 6 2018

gọi số đó là a, ta có:

a chia 10 dư 3; chia 12 dư 5; chia 15 dư 8 và số đó chia hết cho 19. suy ra a=7 chia hết cho 10,12,15=> a+7 thuộc BCNN(10,12,15)

ta có BCNN(10,12,15)=60

suy ra a+7 thuộc B(60)={0,60,120,180,240,300,360,420,480,540,600,660,720,780,.....}

bạn lấy mấy số đó trừ 7 rồi xem số nào chia hết cho 19 là dc