Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên nhỏ nhất có 3 chữ số cần tìm là a
Theo bài ra ta có: a chia 11 dư 5 \(\Rightarrow\)a=11m+5
\(\Rightarrow\)a+6=(11m+5)+6=11m+11=11(m+1) chia hết cho 11\(\left(m\in N\right)\)
Vì 77 chia hết cho 11 nên (a+6)+77 chia hết cho 11
=> a+83 chia hết cho 11(1)
a chia 13 dư 8 => a=13n+8
=> a+5=(13n+8)+5=13n+13=13(n+1) chia hết cho 13\(\left(n\in N\right)\)
Vì 78 chia hết cho 13 nên (a+5)+78 chia hết cho 13
=> a+83 chia hết cho 13(2)
Từ (1) và (2) suy ra (a+83) chia hết cho BCNN(11;13) => (a+83) chia hết cho 143
=> a=143k - 43 (k \(\in\)N*)
Để a là số tự nhiên nhỏ nhất có 3 chữ số thì k=2
=> a=143 x 2 - 43 = 203
Gọi số cần tìm là a :
Khi đó a + 1 chia hết cho 5
a + 1 chia hết cho 7
a + 1 chia hết cho 10
Nên a + 1 thuộc BCNN (5;7;10) = 70
=> a + 1 = 70
=> a = 69
Vậy số cần tìm là 69
tìm số tự nhiên nhỏ nhất có 10 chữ số biết khi chia cho 13 dư 5,khi chia 23 du 19, khi chia 37 du 29
Sao kì zậy! Mình tính được = 95 cơ. Sorry nhưng ko biết cách giải.
gọi snt nhỏ nhất cần tìm là a ( a thuộc N*)
vì khi chia a cho 11 dư 5
=> a chia hết cho 11- 5
=> a thuộc B( 6)
vì a chia 13 dư 8
=> a chia hết cho 13 - 8
=> a thuộc B( 5)
=> a thuộc Bc( 5;6)
vì 5 ; 6 là 2 snt cùng nhau
=> BC(5;6)= { 0; 30; 60;120;...}
mà a là snt nhỏ nhất có 3 cs
=> a= 120
vậy.....
Vì a nhỏ nhất => a+ 6 nhỏ nhất
Theo bài ra => a+ 6 chia hết cho 11; a+ 6 chia hết cho 13; a+ 6 nhỏ nhất => a+ 6 là BCNN (11; 13)
11= 11; 13= 13
BCNN (11; 13)= 11. 13= 143
=> a+ 6= 143 => a= 137
Vậy => a= 137
Gọi số tự nhiên nhỏ nhất có 3 chữ sốcần tìm là a
Tao có: + a : 11 dư 5 => a=11m+5 => a+6=(11m+5)+6 = 11m+11=11(m+1) \(⋮\)11 (\(m\in N\))
Vì 77 \(⋮\)11 => (a+6)+77 \(⋮\)11 => (a+83) \(⋮\)11 (1)
+ a : 13 dư 8 => a=13n+8 => a+5=(13n+8)+5 = 13n+13=13(n+1) \(⋮\)11 (\(n\in N\))
Vì 78 \(⋮\)13 => (a+5)+78 \(⋮\)13 => (a+83) \(⋮\)13 (2)
Từ (1) & (2) => a+83 \(⋮\)BCNN(11;13) => a+83 \(⋮\)143 => a=143k-83 (k \(\in\)N*)
Để a đạt giá trị nhỏ nhất ta chọn : k=2 => 143.2-83=203
Vậy a=203
gọi số đó là a, ta có:
a chia 10 dư 3; chia 12 dư 5; chia 15 dư 8 và số đó chia hết cho 19. suy ra a=7 chia hết cho 10,12,15=> a+7 thuộc BCNN(10,12,15)
ta có BCNN(10,12,15)=60
suy ra a+7 thuộc B(60)={0,60,120,180,240,300,360,420,480,540,600,660,720,780,.....}
bạn lấy mấy số đó trừ 7 rồi xem số nào chia hết cho 19 là dc