Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Ta thấy :
\(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
...
\(\frac{1}{399}>\frac{1}{400}\)
\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)
có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
Các phân số \(\frac{1}{201};\frac{1}{202};...;\frac{1}{400}\) đều lớn hơn \(\frac{1}{400}\Rightarrow\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{1}{2}\) (do có 200 số hạng)
=> điều phải chứng minh
1/201 + 1/202 + ... + 1/400 > 1/400 x 200
1/201 + 1/202 + ... + 1/400 > 1/2
Vậy 1/201 + 1/202 + ... + 1/400 > 1/2
Đặt \(A=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Vì \(\frac{1}{201}>\frac{1}{202}>...>\frac{1}{399}>\frac{1}{400}\)nên :
\(A< \left(\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\right)\)( Có 200 số )
\(A< \frac{1}{400}\times200\)
\(A< \frac{200}{400}\)
\(A< \frac{1}{2}\)( Điều phải chứng minh )
\(A=16-\frac{\left(-2\right)\cdot\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{2020}\right)}{\frac{1}{3}\cdot\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{2020}\right)}\)
\(A=16-\frac{-2}{\frac{1}{3}}=16-\left(-6\right)=22\)
Vậy A = 22
Ta có:
\(A=16-\frac{-\frac{2}{9}-\frac{2}{10}-\frac{2}{11}-...-\frac{2}{2020}}{\frac{1}{27}+\frac{1}{30}+\frac{1}{33}+...+\frac{1}{6060}}\)
\(\Rightarrow A=16+\frac{\frac{2}{9}+\frac{2}{10}+\frac{2}{11}+...+\frac{2}{2020}}{\frac{1}{27}+\frac{1}{30}+\frac{1}{33}+...+\frac{1}{6060}}\)
\(\Rightarrow A=16+\frac{2\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{2020}\right)}{\frac{1}{3}\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{2020}\right)}\)
\(\Rightarrow A=16+\frac{2}{\frac{1}{3}}\)
\(\Rightarrow A=16+\left(2:\frac{1}{3}\right)\)
\(\Rightarrow A=16+\left(2.3\right)\)
\(\Rightarrow A=16+6\)
\(\Rightarrow A=22\)
Vậy\(A=22\)
A = 16 + (2/9+2/10+....+2/2020)/(1/27+1/30+.....+1/6060)
= 16 + 6
= 22
Tk mk nha