K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2015

a, Gọi ƯCLN(n+4; n+3) là d. Ta có:

n+4 chia hết cho d

n+3 chia hết cho d

=> n+4-(n+3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(n+4; n+3) = 1

=> \(\frac{n+4}{n+3}\)tối giản (đpcm)

b, Gọi ƯCLN(n-1; n-2) là d. Ta có:

n-1 chia hết cho d

n-2 chia hết cho d

=> n-1-(n-2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(n-1; n-2) = 1

=> \(\frac{n-1}{n-2}\)tối giản (đpcm)

12 tháng 4 2018

cố lên

17 tháng 8 2016

Gọi d là ƯCLN(12n+1;30n+2)

Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)

           \(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)

Mà \(n\in N\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản              ĐPCM

17 tháng 8 2016

Giải:

Gọi d = UCLN ( 12n + 1; 30n + 2 )

Ta có: 

\(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)

\(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)

Vì \(d\in N\) nên d = 1

Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.

\(\Rightarrowđpcm\)

 

14 tháng 2 2020

\(\text{Gọi:}d=\left(2n-1,n^2+n+1\right)\Rightarrow\hept{\begin{cases}\left(2n-1\right)^2⋮d\\n^2+n+1⋮d\end{cases}}\Rightarrow\left(4n^2-4n+1-4n^2-4n-4\right)⋮d\)

\(\Leftrightarrow-8n-3⋮d\Leftrightarrow8n+3⋮d\Leftrightarrow8n-4-\left(8n+3\right)⋮d\Leftrightarrow7⋮d\Leftrightarrow d\in\left\{1;7\right\}\)

\(\text{nếu 2 só trên đều chia hết cho 7}\Rightarrow2n\text{ chia 7 dư 1}\Rightarrow n=7k+4\Rightarrow n^2+n+1=49k^2+35k+17⋮7̸\)

vậy p/s trên tối giản :D

\(\dfrac{n^3+5n+1}{n^4+6n^2+n+5}=\dfrac{n^3+5n+1}{n\left(n^3+5n+1\right)+n^2+1}=1+\dfrac{1}{n^2+1}\)

\(\dfrac{1}{n^2+1}\)là phân số tối giản nên\(\frac{n^3+5n+1}{n^4+6n^2+n+5}\)là phân số tối giản(đpcm)

20 tháng 6 2015

umk đây này

Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.

UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất

Do đó 2+n=2003 (Vì 2003 là số nguyên tố)

Vậy n=2001

12 tháng 2 2019

Gọi d =ƯCLN(2m+9; 14m+62)

Vậy 2 m + 9 ⋮ d ⇒ 7 ( 2 m + 9 ) ⋮ d ⇔ 14 m + 63 ⋮ d 14 m + 62 ⋮ d ⇒ 14 m + 63 − ( 14 m + 62 ) ⋮ d ⇔ 1 ⋮ d ⇔ d = 1

Vậy ta được đpcm