Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào
\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)
Ta có
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)
Bình phương 2 vế của (1)
\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)
Do x+y+z=0 nên
\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)
Thay (3) vào (2)
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)
\(\text{Xét hiệu:}\)
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)
\(=\frac{y^2+xy}{x^2y+xy^2}+\frac{x^2+xy}{x^2y+xy^2}-\frac{4xy}{x^2y+xy^2}\)
\(=\frac{x^2-2xy+y^2}{x^2y+xy^2}=\frac{\left(x-y\right)^2}{x^2y+xy^2}\)
\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y và }x>0;y>0\)
\(\text{nên: }\frac{\left(x-y\right)^2}{x^2y+xy^2}\ge0\text{ với mọi x;y hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)
\(\text{Xét hiệu:}\)
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)
\(=\frac{xy+y^2}{xy.\left(x+y\right)}+\frac{x^2+xy}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}=\frac{x^2-2xy+y^2}{xy.\left(x+y\right)}=\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\)
\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y };x>0;y>0\)
\(\text{Nên }\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\ge0\text{ với mọi x;y}\)
\(\text{hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y }\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)
\(\text{Dấu "=" xảy ra khi x=y}\)
...\(\Leftrightarrow\frac{x+y+2}{\left(x+1\right)\left(y+1\right)}\ge\frac{2}{1+\sqrt{xy}}\) \(\Leftrightarrow\left(x+y+2\right)\left(1+\sqrt{xy}\right)\ge2\left(x+1\right)\left(y+1\right)\)
\(\Leftrightarrow x\sqrt{xy}+y\sqrt{xy}+2\sqrt{xy}+x+y+2\ge2xy+2x+2y+2\)\
\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)
Vì bđt cuối luôn đúng \(\forall xy\ge1\) mà các phép biến đổi trên là tương đương nên bđt đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow x=y\)
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)
\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)
\(\Leftrightarrow x+y+z+\dfrac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\dfrac{9}{x+y+z}\ge2\sqrt{\dfrac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\) ( đpcm )
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=1\)
Lời giải:
Vì $0\leq x,y,z\leq 1$ nên:
$x(x-1)(y-1)\geq 0$
$\Leftrightarrow x^2y\geq x^2+xy-x$
Tương tự và cộng theo vế:
$x^2y+y^2z^2+z^2x+1\geq x^2+y^2+z^2+(xy+yz+xz)-(x+y+z)+1(*)$
Lại có:
$(x-1)(y-1)(z-1)\leq 0$
$\Leftrightarrow xyz-(xy+yz+xz)+(x+y+z)-1\leq 0$
$\Leftrightarrow xy+yz+xz-(x+y+z)\geq xyz-1\geq -1$ do $xyz\geq 0(**)$
Từ $(*); (**)\Rightarrow x^2y+y^2z+z^2x+1\geq x^2+y^2+z^2$
Ta có đpcm
Dấu "=" xảy ra khi $(x,y,z)=(0,1,1); (0,0,1)$ và hoán vị.