K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

\(\text{Xét hiệu:}\)

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)

\(=\frac{y^2+xy}{x^2y+xy^2}+\frac{x^2+xy}{x^2y+xy^2}-\frac{4xy}{x^2y+xy^2}\)

\(=\frac{x^2-2xy+y^2}{x^2y+xy^2}=\frac{\left(x-y\right)^2}{x^2y+xy^2}\)

\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y và }x>0;y>0\)

\(\text{nên: }\frac{\left(x-y\right)^2}{x^2y+xy^2}\ge0\text{ với mọi x;y hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)

29 tháng 8 2015

\(\text{Xét hiệu:}\)

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)

\(=\frac{xy+y^2}{xy.\left(x+y\right)}+\frac{x^2+xy}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}=\frac{x^2-2xy+y^2}{xy.\left(x+y\right)}=\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\)

\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y };x>0;y>0\)

\(\text{Nên }\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\ge0\text{ với mọi x;y}\)

\(\text{hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y }\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)

\(\text{Dấu "=" xảy ra khi x=y}\)

8 tháng 11 2019

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)

\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

3 tháng 2 2020

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

3 tháng 2 2020

Chị xem cách giải của em tại:

Câu hỏi của Nhã Doanh - Toán lớp 9 | Học trực tuyến

(https://h o c 2 4 .vn/hoi-dap/question/680384.html). Do không biết ad đã fix lỗi không gửi được link \(\text{H}\)(h.vn) nên em phải đính kèm link-_-

21 tháng 4 2017

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)

\(\Leftrightarrow x+y+z+\dfrac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x+y+z+\dfrac{9}{x+y+z}\ge2\sqrt{\dfrac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\) ( đpcm )

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=1\)

25 tháng 7 2018

\(VT=\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}\)

\(=\dfrac{4}{\left(x+y\right)^2}>4\)

25 tháng 7 2018

Cách khác.

Ta có: \(A=\dfrac{1}{x\left(x+y\right)}+\dfrac{1}{y\left(x+y\right)}=\dfrac{1}{x+y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(=\dfrac{1}{x+y}.\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

Áp dụng BĐT cho các số x,y >0 , ta có:

\(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\)

Và x+y \(\le\)1 \(\Rightarrow xy\le\dfrac{1}{4}\) \(\Rightarrow A\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Dấu ''='' xảy ra khi x = y =0,5

16 tháng 9 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)( Bất đẳng thức Svac-xơ )

Dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\)

23 tháng 6 2020

BĐT trên 

\(< =>\frac{xy+yz+xz}{xyz}\ge\frac{9}{x+y+z}\)

\(< =>\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)

Áp dụng BĐT cô si cho 3 số :

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

Nhân vế với vế : \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

Nên ta có đpcm

8 tháng 8 2017

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

8 tháng 8 2017

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)