K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)

\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!