Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
= \(\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - \(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\) - \(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - 2.\(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - \(\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
= \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\) - \(1-\frac{1}{2}-...-\frac{1}{100}\)
= \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Vậy \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\) = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Mình chỉ làm được phần a) thôi, nhưng k cho mình nhé
Giả sử [(1+2+3+.......+n)-7] chia hết cho 10
=>[(1+2+3+.......+n)-7= \(\frac{n.\left(n+1\right)}{2}\)- 7 \(⋮\)10
=> \(\frac{n.\left(n+1\right)}{2}\)có tận cùng là 7
Nhưng \(\frac{n.\left(n+1\right)}{2}\)chỉ có tận cùng là : 5 ; 2 ; 3 ; 4 ; 0 , không có tận cùng là 7 nên giả thiết trên là sai
Vậy [ ( 1 + 2 + 3 + ... + n ) - 7 ] không chia hết cho 10 với mọi n thuộc N
Gọi (n4 + 3n2 + 1 ; n3 + 2n) = d (\(d\inℕ^∗\))
\(\hept{\begin{cases}n^4+3n^2+1⋮d\\n^3+2n⋮d\end{cases}}\Rightarrow\hept{\begin{cases}n^4+3n^2+1⋮d\\n\left(n^3+2n\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}n^4+3n^2+1⋮d\\n^4+2n^2⋮d\end{cases}}\)
=> (n4 + 3n2 + 1) - (n4 + 2n2) \(⋮\)d
=> n2 + 1 \(⋮\)d (1)
Lại có \(\hept{\begin{cases}n^2+1⋮d\\n^3+2n⋮d\end{cases}}\Rightarrow\hept{\begin{cases}n\left(n^2+1\right)⋮d\\n^3+2n⋮d\end{cases}}\Rightarrow\hept{\begin{cases}n^3+n⋮d\\n^3+2n⋮d\end{cases}}\Rightarrow\left(n^3+2n\right)-\left(n^3+n\right)⋮d\Rightarrow n⋮d\)
=> \(n^2⋮d\)(2)
Từ (1) (2) => n2 + 1 - n2 \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
=> (n4 + 3n2 + 1 ; n3 + 2n) = 1 (đpcm)
n(n^2+1).(n^2+4)=n(n^2-4+5).(n^2-1+5)=[n(n^2-4+5n)].[(n^2-1)+5]=n.(n^2-4)
=n(n^2-4).(n^2-1)+5n(n^2-4+n^2+4)=(n-2).(n-1).n.(n+1).(n+2)+10n^3
vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số tự nhiên liên tiếp chia hết cho 5
10n^3 có chứa thừa số 5 nên chia hết cho 5