K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

Hai số tự nhiên liên tiếp gồm một số lẻ và một số chẵn 

\(\Rightarrow2n\left(2n+1\right)⋮2\)

Mà \(3n+1\)là số lẻ nên....

2 tháng 7 2018

gọi tích hai stn liên tiếp là \(n\left(n+1\right)=n^2+n\left(n\in N\right)\)

giả sử tích hai stn liên tiếp có dạng 3n+1

suy ra \(n^2+n=3n+1\Leftrightarrow n^2-2n+1=2\Leftrightarrow\left(n-1\right)^2=2\Leftrightarrow\orbr{\begin{cases}n-1=\sqrt{2}\\n-1=-\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=\sqrt{2}+1\\n=-\sqrt{2+1}\end{cases}}\)

mà n là số tự nhiên nên ...

11 tháng 3 2017

a ) Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\)

Ta có : \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n^4+6n^3+11n^2+6n+1=\left(x^2+3x+1\right)^2\) là số chính phương (đpcm)

b ) \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)

\(\Rightarrow a+1\) thuộc Ư(3) = { -3; -1; 1; 3 }

=> a = { - 4; - 2; 0; 2 }

12 tháng 3 2017

a = { -4 ; - 2 ; 1 ; 3}

  nha

28 tháng 10 2016

Các số tự nhiên liên tiếp từ 1 đến 190 là { 1 ; 2 ; 3 ; 4 ;....; 189 ; 190 }

Tổng các số tự nhiên n từ 1 đến 190 là :

 \(\frac{\left(190-1\right)+1}{2}.\left(1+191\right)\)

\(=\frac{190}{2}.192\)

\(=95.192\)

\(=18240\)

30 tháng 10 2016

Thằng chó

16 tháng 2 2017

số lớn nhất là 965

16 tháng 2 2017

Xem lại đề bạn ơi!

17 tháng 6 2016

Gọi 3 số tn cần tìm là n - 1; n ; n+1. ( n thuộc N* )

17 tháng 6 2016

Gọi 3 STN cân tìm là n - 1; n ; n+1 (n thuộc N* )

theo bài ra ta có : [ (n - 1 )n ] +[ n(n+1) ] + [ ( n-1) (n+1)] = 242

                           ( n- n) + ( n2 + n ) + ( n+ n - n -1 ) = 242

                           3n2 - 1 = 242

                           3n2 =243  

                           n2 = 81

vì n là STN nên n=9

Vậy 3 số cần tìm là 8;9;10

29 tháng 8 2018

Gọi 4 số tự nhiên liên tiếp lần lượt là n ; n + 1 ; n + 2 ; n + 3

Ta có:

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=24\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)-24=0\)

\(\Rightarrow\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]-24=0\)

\(\Rightarrow\left(n^2+3n\right)\left(n^2+3n+2\right)-24=0\)

Đặt \(n^2+3n+1=a\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)-24=0\)

\(\Rightarrow a^2-1-24=0\)

\(\Rightarrow a^2-25=0\)

\(\Rightarrow\left(a-5\right)\left(a+5\right)=0\)

\(\Rightarrow\left(n^2+3n+1-5\right)\left(n^2+3n+1+5\right)=0\)

\(\Rightarrow\left(n^2+3n-4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left(n^2-n+4n-4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left[n\left(n-1\right)+4\left(n-1\right)\right]\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left(n-1\right)\left(n+4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\\n^2+3n+6=0\end{matrix}\right.\)

Mà ta có:

\(n^2+3n+6\)

\(=n^2+2.n\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+6\)

\(=\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\)

\(\left(n+\dfrac{3}{2}\right)^2\ge0\) với mọi n

\(\Rightarrow\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\)

\(\Rightarrow n^2+3n+6\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-4\end{matrix}\right.\)

Vì n là số tự nhiên

=> n = 1

Vậy 4 số tự nhiên liên tiếp có tích là 24 lần lượt là 1 ; 2 ; 3 ; 4

9 tháng 11 2015

2 x 3 x 5 x 7 x 13 <=> 13 x 14 x15 <=> 2730

tick mình nhé !!!

9 tháng 11 2015

13 ; 1 và 15

Tick ủng hộ mik nhé !!!