Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số tự nhiên liên tiếp gồm một số lẻ và một số chẵn
\(\Rightarrow2n\left(2n+1\right)⋮2\)
Mà \(3n+1\)là số lẻ nên....
gọi tích hai stn liên tiếp là \(n\left(n+1\right)=n^2+n\left(n\in N\right)\)
giả sử tích hai stn liên tiếp có dạng 3n+1
suy ra \(n^2+n=3n+1\Leftrightarrow n^2-2n+1=2\Leftrightarrow\left(n-1\right)^2=2\Leftrightarrow\orbr{\begin{cases}n-1=\sqrt{2}\\n-1=-\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\sqrt{2}+1\\n=-\sqrt{2+1}\end{cases}}\)
mà n là số tự nhiên nên ...
a ) Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\)
Ta có : \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n^4+6n^3+11n^2+6n+1=\left(x^2+3x+1\right)^2\) là số chính phương (đpcm)
b ) \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)
\(\Rightarrow a+1\) thuộc Ư(3) = { -3; -1; 1; 3 }
=> a = { - 4; - 2; 0; 2 }
Các số tự nhiên liên tiếp từ 1 đến 190 là { 1 ; 2 ; 3 ; 4 ;....; 189 ; 190 }
Tổng các số tự nhiên n từ 1 đến 190 là :
\(\frac{\left(190-1\right)+1}{2}.\left(1+191\right)\)
\(=\frac{190}{2}.192\)
\(=95.192\)
\(=18240\)
Gọi 3 STN cân tìm là n - 1; n ; n+1 (n thuộc N* )
theo bài ra ta có : [ (n - 1 )n ] +[ n(n+1) ] + [ ( n-1) (n+1)] = 242
( n2 - n) + ( n2 + n ) + ( n2 + n - n -1 ) = 242
3n2 - 1 = 242
3n2 =243
n2 = 81
vì n là STN nên n=9
Vậy 3 số cần tìm là 8;9;10
Gọi 4 số tự nhiên liên tiếp lần lượt là n ; n + 1 ; n + 2 ; n + 3
Ta có:
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=24\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)-24=0\)
\(\Rightarrow\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]-24=0\)
\(\Rightarrow\left(n^2+3n\right)\left(n^2+3n+2\right)-24=0\)
Đặt \(n^2+3n+1=a\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)-24=0\)
\(\Rightarrow a^2-1-24=0\)
\(\Rightarrow a^2-25=0\)
\(\Rightarrow\left(a-5\right)\left(a+5\right)=0\)
\(\Rightarrow\left(n^2+3n+1-5\right)\left(n^2+3n+1+5\right)=0\)
\(\Rightarrow\left(n^2+3n-4\right)\left(n^2+3n+6\right)=0\)
\(\Rightarrow\left(n^2-n+4n-4\right)\left(n^2+3n+6\right)=0\)
\(\Rightarrow\left[n\left(n-1\right)+4\left(n-1\right)\right]\left(n^2+3n+6\right)=0\)
\(\Rightarrow\left(n-1\right)\left(n+4\right)\left(n^2+3n+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\\n^2+3n+6=0\end{matrix}\right.\)
Mà ta có:
\(n^2+3n+6\)
\(=n^2+2.n\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+6\)
\(=\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\)
Vì \(\left(n+\dfrac{3}{2}\right)^2\ge0\) với mọi n
\(\Rightarrow\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\)
\(\Rightarrow n^2+3n+6\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-4\end{matrix}\right.\)
Vì n là số tự nhiên
=> n = 1
Vậy 4 số tự nhiên liên tiếp có tích là 24 lần lượt là 1 ; 2 ; 3 ; 4