K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chỉ cần bạn nhớ dạng thức như sau : abc = 100a + 10b + c thì sử dụng được hầu hết dạng toán như thế này.

Ta có : abc - cba = 100a + 10b + c - 100c - 10b - a = ( 100a - a ) + ( 10b - 10b ) - ( 10c - c ) = 99a - 99c = 99 x ( a - c ) chia hết cho 99

=> abc - cba chia hết cho 99

22 tháng 10 2019

Ta có:

abc - cba = 100a + 10b + c - ( 100c+10b+a)

=100a+10b+c-100c-10b-a

= 99a - 99c

= 99 ( a-c) \(⋮\)99

hay abc - cba \(⋮\)99

18 tháng 7 2015

Chỉ cần bạn nhớ dạng thức như sau: abc = 100a+10b+c thì sử dụng được hầu hết dạng toán như thế này.

Ta có: abc - cba = 100a+10b+c-100c-10b-a = (100a-a)+(10b-10b)-(100c-c) = 99a - 99c = 99(a-c) chia hết cho 99

18 tháng 7 2015

Ta có:

abc - cba = 100a+10b+c-100c-10b-a = (100a-a) + (10b-10b) - (100c-c) = 99a - 99c = 99. (a-c) chia hết cho 99 (đpcm)

25 tháng 8 2017

ok dc thui

25 tháng 8 2017

a)   Có \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)\)

       Do \(11⋮11\Rightarrow11\left(a+b\right)⋮11\Rightarrow\overline{ab}+\overline{ba}⋮11\)

b)   Có \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

                                  \(=100a+10b+c-100c-10b-a\)

                                 \(=\left(100a-a\right)+\left(10b-10b\right)+\left(c-100c\right)\)

                                 \(=99a-99c\)

                                 \(=99\left(a-c\right)\)

     Do \(99⋮99\Rightarrow99\left(a-c\right)⋮99\Rightarrow\overline{abc}-\overline{cba}⋮99\)

                               

30 tháng 10 2016

a, b, c,d là các chữ số 

abcd chia hết cho 9 nên (a + b + c + d) chia hết cho 9

Mà ab + cd = (a + b + c + d)

Nên ab + cd cũng chia hết cho 9 

19 tháng 11 2018

b, ta có: abcd = ab.100+cd

                     = ab.99+ab+cd

                     =ab.99+( ab+cd)

         Vì ab.99 chia hết cho 99, ab+cd chia hết cho 99

         Nên abcd chia hết cho 99 nếu ab+cd chia hết cho 99

11 tháng 10 2020

3A =32+33+34+...+3100+3101

khi 2A = 3101 - 3

suy ra: A = (3101 - 3):2

b, A = 31+32+33+...+3100

A = (31+32)+(33+34)+...+(399+3100)

A = 3(1+3)+33(1+3)+...+399(1+3)

A= 12(1+32+33+...+398) nên A chia hết cho 4 và 12

c, mk chưa làm được

11 tháng 10 2020

Ta có A = 3 + 32 + 33 + ... + 399 + 3100

=> 3A = 32 + 33 + 34 + ... + 3100 + 3101

Khi đó 3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)

=> 2A = 3101 - 3

=> A = \(\frac{3^{101}-3}{2}\)

b) Ta có A = 3 + 32 + 33 + 34 +... + 399 + 3100

= (3 + 32) + 32(3 + 32) + ... + 398(3 + 32)

= 12 + 32.12 + ... + 398.12

= 12(1 + 32 + ... + 398\(⋮\)12

Lại có A = 12(1 + 32 + ... + 398) = 3.4.(1 + 32 + ... + 398\(⋮\)4

c) Sửa đề A không chia hết cho 13

Ta có A =  3 + 32 + 33 + 34 + 35 + ... + 398 + 399 + 3100

=> A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 398 + 399 + 3100

=> A + 1 = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 398(1 + 3 + 32)

=> A + 1 = 13 + 33.13 + 33.13 + ... + 13.398

=> A + 1 = 13(1 + 33 + ... + 398)

=> A = 13(1 + 33 + ... + 398) - 1 

=> A không chia hết cho 13

19 tháng 8 2019

a, \(M=1+6+6^2+6^3+...+6^{99}\)

\(M=6\cdot(1+6)+6^2(1+6)+6^3(1+6)+...+6^{99}(1+6)\)

\(M=6\cdot7+6^2\cdot7+6^3\cdot7+...+6^{99}\cdot7\)

\(M=7\cdot\left[6+6^2+6^3+...+6^{99}\right]⋮7(đpcm)\)

b, \(M=1+6+6^2+6^3+...+6^{99}\)

\(M=6\cdot\left[1+6+6^2+6^3\right]+...+6^{96}\left[1+6+6^2+6^3\right]\)

\(M=6\cdot\left[7+36+216\right]+...+6^{96}\left[7+36+216\right]\)

\(M=6\cdot259+...+6^{96}\cdot259\)

\(M=259\cdot\left[6+...+6^{96}\right]⋮259\)

Vậy \(M⋮259(đpcm)\)

20 tháng 8 2017

giải ra giùm mình nhé 

ai trả lời được mình k cho

2 tháng 11 2023

Ai cho điểm là hs giỏi

 

4 tháng 7 2017

abc-cba=396

100*a+10*b+c-100*c-10*b-a=396

99*a-99*c=396; 99*(a-c)=396

a-c=4 mặt khác chia hết 45 nên chia hết 9 và 5

abc chia hết 5 =>tận cùng = 0 hoặc 5

=>c không thể =0

=>c=5 c=5 thì a=c+4=5+4=9

abc chia hết 9 nên a+b+c chia hết 9 =>9+b+5=14+b chia hết 9

vậy b=4