Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n3 + 11n = n3 - n + 12n = n(n2 - 1) + 12n= (n - 1)n(n + 1) + 12n
Vì n là số nguyên nên (n - 1)n(n + 1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6; mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6.
Vậy (n - 1)n(n + 1) + 12n chia hết cho 6 => n3 + 11n chia hết cho 6 (đpcm)
n 3 + 11n = n 3 ‐ n + 12n = n﴾n 2 ‐ 1﴿ + 12n= ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n
Vì n là số nguyên nên ﴾n ‐ 1﴿n﴾n + 1﴿ là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6
;mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6
Vậy ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n chia hết cho 6 => n 3 + 11n chia hết cho 6 ﴾đpcm﴿
Lời giải:
\(\frac{4}{m}-\frac{1}{n}=1\)
\(\frac{4\times n-m}{m\times n}=1\)
\(4\times n-m=m\times n\)
Vì $m\times n$ chia hết cho $n$ nên $4\times n-m$ chia hết cho $n$
Mà $4\times n$ chia hết cho $n$ nên $m$ chia hết cho $n$
Ta có điều phải chứng minh.
Ta có:
m+3m2+2m3=m.(1+3m+2m2)
=m.[1+(m+2m)+2m2]
=m.[(1+m)+2m.(m+1)]
=m.[(m+1).(2m+1)]
=m.(m+1).(2m+1)
Ta thấy: m.(m+1).(m+2) và (m-1).m.(m+1) là tích của 3 số tự nhiên liên tiếp nên chúng đều chia hết cho6=>Hiệu của chúng chia hết cho 6
=>m.(m+1).(m+2)-(m-1).m.(m+1) chia hết cho 6
Lấy m.(m+1) chung thì ta có:
=>m.(m+1).[m+2-(m-1)] chia hết cho 6
=>m+3m2+2m3 chia hết cho 6 với m là số tự nhiên
m+3m2+2m3 =m (1 + 3m + 2m2) = m.(1+ m + 2m + 2m2) = m [(1+m) + 2m (1+ m)]
= m. (m+1).(2m+ 1) = m.(m+ 1). [(m + 2) + (m - 1)] = m(m+1)(m+2) - (m - 1)m (m + 1)
Nhận xét: m(m+1)(m+2) ; (m - 1)m (m + 1) đều chia hết cho 6 vì đều là tích của 3 số tự nhiên liên tiếp
=> m(m+1)(m+2) - (m - 1)m (m + 1) chia hết cho 6
=> m+3m2+2m3 chia hết cho 6 với m là số tự nhiên
Vì M chia hết cho 5 nên b = 0 hoặc 5.
- Nếu b=0 thì 3+5+a+ 0= 8 +a chia hết cho 9.
Vì \(0\le a\le9\) nên \(8\le8+a\le17\)
Vậy 8+a=9 => a=9-8=1
Ta có cặp ab thứ nhất là 10
- Nếu b=5 thì 3+5+a+ 5= 13 +a chia hết cho 9.
Vì \(0\le a\le9\) nên \(13\le13+a\le22\)
Vậy 13+a=18 => a=18-13=5
Ta có cặp ab thứ hai là 55
Vậy M=3510 hoặc 3555
n(n+1)()2n+1) = n(n+1)(n+2 + n - 1) = n(n+1)(n+2) + (n-1).n.(n+1)
n(n+1)(n+2) ; (n-1).n.(n+1) đều là tích của 3 số tự nhiên liên tiếp nên các tích đó chia hết 6
=> n(n+1)(n+2) + (n-1).n.(n+1) chia hết cho 6
=> n(n+1)()2n+1) chia hết cho 6
a, \(M=1+6+6^2+6^3+...+6^{99}\)
\(M=6\cdot(1+6)+6^2(1+6)+6^3(1+6)+...+6^{99}(1+6)\)
\(M=6\cdot7+6^2\cdot7+6^3\cdot7+...+6^{99}\cdot7\)
\(M=7\cdot\left[6+6^2+6^3+...+6^{99}\right]⋮7(đpcm)\)
b, \(M=1+6+6^2+6^3+...+6^{99}\)
\(M=6\cdot\left[1+6+6^2+6^3\right]+...+6^{96}\left[1+6+6^2+6^3\right]\)
\(M=6\cdot\left[7+36+216\right]+...+6^{96}\left[7+36+216\right]\)
\(M=6\cdot259+...+6^{96}\cdot259\)
\(M=259\cdot\left[6+...+6^{96}\right]⋮259\)
Vậy \(M⋮259(đpcm)\)