Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=3a+2b;B=10a+b
\(\Rightarrow A=3a+2b;2B=20a+2b\)
\(\Rightarrow2B-A=17a\) chia hết cho 17 với mọi a
Nếu A chia hết cho 17 \(\Rightarrow\)2B chia hết cho 17(do 2B-A chia hết cho 17)
\(\Rightarrow\)B chia hết cho 17 (1)
Nếu 2B chia hết cho 17\(\Rightarrow\)A chia hết cho 17(do 2B-A chia hết cho 17)(2)
Từ (1) và (2)\(\Rightarrow\)3a+2b chia hết cho 17\(\Leftrightarrow\)10a+b chia hết cho 17
\(\Rightarrow\) Đ.p.c.m
Đề bài có vấn đề bạn ạ: Phải là: f(x)= ax^3+bx^2+cx+d chứ bạn
Mình giải theo đề bài sửa nhé:
Ta có: f(0) =a.0^3+b.0^2+c.0+d=d => d chia hết cho 5
f(1) =a.1^3+b.1^2+c.1+d=a+b+c+d (1)=> a+b+c chia hết cho 5
f(-1)=a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d(2)
Cộng (1) với (2), ta có: 2b + 2d chia hết cho 5
Vì d chia hết cho 5=> 2d chia hết cho 5
=> 2b chia hết cho 5 Vì (2,5)=1 => b chia hết cho 5
f(2)-a.2^3+b.2^2+c.2+d=8a+4b+2c+d
Vì d và b chia hết cho 5 => 4b+d chia hết cho 5
=> 8a + 2c chia hết cho 5
=> 6a +2a + 2c chia hết cho 5
=> 6a + 2(a+c) chia hết cho 5
Ta có: 2(a+c) chia hết cho 5 và a+b+c chia hết cho 5 mà b chia hết cho 5 => a+c chia hết cho 5.
=> 6a chia hết cho 5. Vì (6;5)=1 => a chia hết cho 5
Vì (a+c) chia hết cho 5 mà a chia hết cho 5 => c chia hết cho 5
Vậy a;b;c;d chia hết cho 5