Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow4x+3\le4x^2+4\Leftrightarrow4x^2-4x+1\ge0\)
\(\Leftrightarrow\left(2x-1\right)^2\ge0\) (Luôn đúng )
=> Đpcm
\(\frac{4x+3}{x^2+1}\le4\)
\(\Leftrightarrow\frac{4x+3}{x^2+1}\le\frac{4\left(x^2+1\right)}{x^2+1}\)
\(\Leftrightarrow4x+3\le4\left(x^2+1\right)\)
\(\Leftrightarrow4x+3\le4x^2+4\)
\(\Leftrightarrow4x-4x^2+3-4\le0\)
\(\Leftrightarrow-\left(2x-1\right)^2\le0\)(đpcm)
1.
\(A=\frac{x^2-x+2}{x-2}=\frac{x(x-2)+(x-2)+4}{x-2}=x+1+\frac{4}{x-2}\)
Với $x$ nguyên, để $A$ nguyên thì $\frac{4}{x-2}$ nguyên.
Điều này xảy ra khi $4\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{3; 1; 0; 4; 6; -2\right\}$
2.
\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1\)
Với $x$ nguyên thì $P=2x-1$ nguyên.
$\Rightarrow P$ nguyên với mọi giá trị $x$ nguyên.
Bình thường A xđ \(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\ne0\)
Ta có \(x^2+4x+5=\left(x+2\right)^2+1\)
Mà \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow x^2+4x+5>1\)(1)
Lại có \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1>0\)(2)
(1)(2) \(\Rightarrow\left(x^2+1\right)\left(x^2+4x+5\right)>0\)hay \(\left(x^2+1\right)\left(x^2+4x+5\right)\ne0\)
b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)
Suy ra:
\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)
\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15
\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2
\(\Leftrightarrow\)4x2-14x = -12
\(\Leftrightarrow4x^2-14x+12=0\)
\(\Leftrightarrow4x^2-8x-6x+12=0\)
\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0
\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)
ĐKXĐ: \(x\ne\pm\frac{3}{2}\)
\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)
\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)
\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)
a) ĐKXĐ: 4x2-4x+1>0
(2x)2-2.2x+1= (2x-1)2≥ 0
b) P= \(\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\) = \(\frac{\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1-1}{\left(2x-1\right)^2}\) = \(\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}\) = 2x-1 c) ta có: x ∈ Z ⇒ 2.x ∈ Z ⇔2x-1 ∈ ZĐKXĐ: \(x\ne-1;\) \(x\ne-3;\)\(x\ne-5;\)\(x\ne-7\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)
\(\Leftrightarrow\)\(\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{3}{8}\)
\(\Rightarrow\)\(3\left(x+1\right)\left(x+7\right)=48\)
\(\Leftrightarrow\)\(x^2+8x+7=16\)
\(\Leftrightarrow\)\(x^2+8x-9=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=9\left(TMĐKXĐ\right)\end{cases}}\)
Vậy...
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\Leftrightarrow\frac{1}{x^2+x+3x+3}+\frac{1}{x^2+3x+5x+15}+\frac{1}{x^2+5x+7x+35}=\frac{3}{16}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)
\(=\frac{3\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)
Mẫu của mỗi phân thức bằng nhau nên => tử của mỗi phân thức cũng phải bằng nhau
=> Đến đây thì dễ rồi, bạn giải ra tìm x
a) Để \(\frac{15}{4x^2-12x+19}\le\frac{3}{2}\) thì \(15\cdot2\le3\cdot\left(4x^2-12x+19\right)\)
\(\Leftrightarrow30\le12x^2-36x+57\)
\(\Leftrightarrow30-12x^2+36x-57\le0\)
\(\Leftrightarrow-12x^2+36x-27\le0\)
\(\Leftrightarrow-12\left(x^2-3x+\frac{9}{4}\right)\le0\)
\(\Leftrightarrow-12\left(x-\frac{3}{2}\right)^2\le0\)(luôn đúng)
b) Để \(\frac{4x+3}{x^2+1}\le4\)
thì \(4x+3\le4\left(x^2+1\right)\)
\(\Leftrightarrow4x+3\le4x^2+4\)
\(\Leftrightarrow4x+3-4x^2-4\le0\)
\(\Leftrightarrow-4x^2+4x-1\le0\)
\(\Leftrightarrow-\left(4x^2-4x+1\right)\le0\)
\(\Leftrightarrow-\left(2x-1\right)^2\le0\)(luôn đúng)