Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\)
a) ĐKXĐ: x \(\ne\pm\frac{1}{2}\)
b) Theo đề bài ta có:
\(2x^2+x=0\)
\(\Rightarrow x\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\left(Loại\right)\end{cases}}}\)
Thay x = 0 (thỏa mãn điều kiện) vào P ta có:
\(P=\frac{0-0+0-1}{0-0+1}=\frac{-1}{1}=-1\)
Vậy khi x = 0 thì P = -1
c) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}=2x-1\)
Để P \(\inℤ\Leftrightarrow2x-1\inℤ\)
Mà -1\(\inℤ;x\inℤ\Rightarrow-1⋮2x\)
\(\Rightarrow2x\inƯ\left(-1\right)=\left\{1;-1\right\}\)
Ta có bảng giá trị:
2x | 1 | -1 |
x | \(\frac{1}{2}\) | \(-\frac{1}{2}\) |
Loại | Loại |
Vậy không có x thỏa mãn P \(\inℤ\)
d) Với x \(\ne\pm\frac{1}{2};P=2\)
\(\Leftrightarrow2x-1=2\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)thì \(P=2\)
a) ĐKXĐ: \(4x^2-4x+1\ne0\)
Ta sẽ giải phương trình \(4x^2-4x+1=0\) để loại các nghiệm:
\(4x^2-4x+1=4\left(x^2-x-\frac{1}{4}\right)=4\left(x-\frac{1}{2}\right)^2\)
Để \(4x^2-4x+1=0\) thì \(4\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
Vậy ĐKXĐ: \(x\ne\frac{1}{2}\)
b) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{8\left(x-\frac{1}{2}\right)^3}{4\left(x-\frac{1}{2}\right)^2}=2x-1\) (chịu khó ngồi phân tích cả tử và mẫu thành nhân tử giúp mình)
c) Ta có: \(P=2x-1\).Với mọi x nguyên thì \(2x\) nguyên.
Do vậy \(P=2x-1\)nguyên.
Suy ra đpcm.
a) ĐKXĐ của phương trình : \(4x^2+4x+1\ne0\)\(\Rightarrow x\ne-\frac{1}{2}\)
b) \(P=\frac{4x^3+8x^2-x-2}{4x^2+4x+1}\)
\(\Rightarrow P=\frac{\left(4x^3-x\right)+\left(8x^2-2\right)}{\left(2x+1\right)^2}\)
\(\Rightarrow P=\frac{x\left(4x^2-1\right)+2\left(4x^2-1\right)}{\left(2x+1\right)^2}\)
\(\Rightarrow P\left(x\right)=\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}\)
\(\Rightarrow P\left(x\right)=\frac{\left(x+2\right)\left(2x-1\right)}{\left(2x+1\right)}=\frac{3}{2}\)\(\Rightarrow P\left(x\right)=2\left(x+2\right)\left(2x-1\right)=3\left(2x+1\right)\)
\(\Rightarrow P\left(x\right)=4x^2+6x-6-\left(6x+3\right)=0\)
\(\Rightarrow P\left(x\right)=4x^2-9=0\)\(\Rightarrow P\left(x\right)=x^2=\frac{9}{4}\)
\(\Rightarrow P\left(x\right)=x^2=\sqrt{\frac{9}{4}}\)\(\Rightarrow P\left(x\right)=\frac{3}{2}\)
câu c) cx tương tự
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
\(\text{Đk:}x\ne-\frac{1}{2}\Rightarrow P=\frac{4x^2\left(x+2\right)-\left(x+2\right)}{\left(2x+1\right)^2}=\frac{\left(4x^2-1\right)\left(x+2\right)}{\left(2x+1\right)^2}=\frac{\left(2x-1\right)\left(x+2\right)}{2x+1}\)
\(=\frac{2x^2+4x-x-2}{2x+1}=\frac{3}{2}\Rightarrow2x^2+3x-2=3x+\frac{3}{2}\Leftrightarrow2x^2-\frac{7}{2}=0......\)
\(P\text{ nguyên }\Rightarrow2x^2+3x-2⋮2x+1\Leftrightarrow2x^2+3x-2-\left(x+1\right)\left(2x+1\right)⋮2x+1\Leftrightarrow-3⋮2x+1....\)
Bài 1:
a) x≠2
Bài 2:
a) x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5x phải có giá trị nguyên.
=> x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
a) \(P=\frac{4x^3+8x^2+x-2}{4x^2+4x+1}=\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}\)
ĐKXĐ :\(\left(2x+1\right)^2\ne0=>2x+1\ne0=>x\ne-\frac{1}{2}\)
b) \(P=\frac{3}{2}\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}=\frac{3}{2}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{2x+1}=\frac{3}{2}\Leftrightarrow4x^2-2x+8x-4=6x+3\)
\(\Rightarrow4x^2=7=>x^2=\frac{7}{4}=>x=\pm\sqrt{\frac{7}{4}}\)
c) \(P=\frac{\left(x+2\right)\left(2x-1\right)}{\left(2x+1\right)}=\frac{\left(x+2\right)\left(2x+1-2\right)}{2x+1}=\frac{\left(x+2\right)\left(2x+1\right)-2\left(x+2\right)}{2x+1}\)
\(=x+2-\frac{2x+2}{2x+1}=x+2-1-\frac{1}{2x+1}\)
để P nguyền khi zà chỉ khi
\(1⋮2x+1\)
\(=>2x+1\inƯ\left(1\right)=\pm1\)
=>\(\orbr{\begin{cases}2x+1=1\\2x+1=-1\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
1.
\(A=\frac{x^2-x+2}{x-2}=\frac{x(x-2)+(x-2)+4}{x-2}=x+1+\frac{4}{x-2}\)
Với $x$ nguyên, để $A$ nguyên thì $\frac{4}{x-2}$ nguyên.
Điều này xảy ra khi $4\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{3; 1; 0; 4; 6; -2\right\}$
2.
\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1\)
Với $x$ nguyên thì $P=2x-1$ nguyên.
$\Rightarrow P$ nguyên với mọi giá trị $x$ nguyên.
a) ĐKXĐ: 4x2-4x+1>0
(2x)2-2.2x+1= (2x-1)2≥ 0
b) P= \(\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\) = \(\frac{\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1-1}{\left(2x-1\right)^2}\) = \(\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}\) = 2x-1 c) ta có: x ∈ Z ⇒ 2.x ∈ Z ⇔2x-1 ∈ Z