K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d 

Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮3\)

Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\)            (1)

Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\)             (2)

Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)

Vậy thì  ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.

10 tháng 2 2021

Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)

=> P/s tối giản

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)

Từ \(\left(1\right)\)\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Rightarrow n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow n^4+2n^2+1⋮d\)

\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))

Vì \(d>0\)\(\Rightarrow d=1\)

\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên

17 tháng 8 2018

Gọi d là ƯC(n3+2n;n4+3n2+1)

n3+2n chia hết d;n4+3n2+1 chia hết d

n(n3+2n) chia hết d ; n4+3n2+1 chia hết d

n4+2n2 chia hết d; n4+3n2+1 chia hết d

(n4+3n2+1) - (n4+2n2) chia hết d

n2+1 chia hết d

n(n2+1) chia hết d

n3+n chia hết d

(n3+2n)-(n3+n) chia hết d

n chia hết d

nchia hết d

(n2+1)-(n2) chia hết cho d

 1 chia hết d

d=1 

PS tối giản

17 tháng 8 2018

Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :

+) \(n^3+2n⋮d\)

\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)   (1)

Và  \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)

22 tháng 11 2016

Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:

       n^3 + 2n chia hết cho d =>  n(n^3 + 2n) chia hết cho d =>   n^4 + 2n^2 chia hết cho d (1)

       n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d  => (n^2 + 1)^2  =  n^4 + 2n^2 + 1 chia hết cho d  (2)

 Từ (1) và (2) suy ra :     

                                               (n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d  =>  1 chia hết cho d => d=+-1

   Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1

22 tháng 11 2016

Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau . 

Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa . 

Vậy không thể rút gọn và phân số này đã tối giản

24 tháng 6 2018

Hướng dẫn giải:

Gọi d là ƯCLN của 2n + 5 và 3n + 7

⇒ (2n + 5)⋮ d và (3n + 7)⋮ d

⇒ [3(2n + 5) - 2(3n + 7)] = 1⋮ d

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho tối giản với ∀n ∈ N 

12 tháng 11 2021

b: Vì 12n+1 là số lẻ

và 30n+2 là số chẵn

nên 12n+1/30n+2 là phân số tối giản

23 tháng 9 2019

Hướng dẫn giải:

Gọi d là ƯCLN của 3n và 3n + 1

⇒ 3n ⋮ d và (3n + 1)⋮ d

⇒ [(3n + 1) - 3n ] = 1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

27 tháng 4 2017

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N