K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

\(\frac{1}{a+1}+\frac{1}{a.\left(a+1\right)}=\frac{a}{a.\left(a+1\right)}+\frac{1}{a.\left(a+1\right)}\)

\(=\frac{a+1}{a.\left(a+1\right)}=\frac{1}{a}.\)

16 tháng 10 2017

kho qua giai gan xong roi 

1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản b) Cho A...
Đọc tiếp

1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)

2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)

3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:

Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản 

b) Cho A =\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\). Chứng minh rằng \(4.A< \left(0,1\right)^6\)

4. Cho \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\). Chứng tỏ rằng \(A>\frac{65}{132}\)

5.Chứng minh rằng \(A=\frac{100^{2016}+8}{9}\)là số tự nhiên 

6. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản

7. Tìm \(x\inℤ\)sao cho \(x-5\)là bội của \(x+2\)

8.Cho \(a,b,c,d\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018.a+c}{2018.b+d}< \frac{c}{d}\)

9.Cho S=\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\). Chứng tỏ rằng \(2< S< 5\)

10. Cho 2018 số tự nhiên là \(a1;a2;...;a2018\)đều là các số lớn hơn 1 thỏa mãn điều kiện \(\frac{1}{a1^2}+\frac{1}{a2^2}+\frac{1}{a3^2}+...+\frac{1}{a2018^2}=1\). Chứng minh rằng trong 2018 số này ít nhất sẽ có 2 số bằng nhau

4
14 tháng 4 2019

Ô...mai..gót

Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K

Hãy đăng từng câu một 

Ai đồng quan điểm

14 tháng 4 2019

Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?

8 tháng 8 2023

\(129-10=119⋮b\)

\(61-10=51⋮b\)

=> b là ước chung của 119 và 51 => b=17

b/

Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị

Số dư trong phép chia này là

14-1=13

\(\Rightarrow a=14.5+13=83\)

9 tháng 8 2023

a) gọi số chia cần tìm là b ( b > 10)

Gọi qlà thương của phép chia 129 cho b

Vì 129 chia cho b dư 10 nên ta có:129 = b.q+ 10 ⇒ b.q1 =119 = 119.1 =17.7

Gọi qlà thương của phép chia 61 chia cho cho b

Do chia 61 cho b dư 10 nên ta có 61 = b.q+10⇒ b.q2 = 51 = 1.51 = 17.3

Vì b < 10 và q≠ qnên ta dược b = 17

Vậy số chia thỏa mãn bài toán là 17.

 

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1

a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*

=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

b) tương tự ta có \(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)

\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

bài 2 chịu

3 tháng 8 2023

\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .

Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)

            Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)

\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)

   Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\) 

Vì n thuộc N nên tổng của A là : một số chính phương . 

\(c)\) Ta có : Số hạng của dãy số B là : n

     Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)

\(=n.\left(n+1\right)\) 

Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 . 

Ta thấy chúng đều không thoả mãn .

vậy.............

            

3 tháng 8 2023

Bạn xem lại câu A+B mới là số chính phương k?

7 tháng 8 2017

x50=0

x=0÷50

x=0

Bài kia mình chưa nghĩ ra nha.

20 tháng 11 2019

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4