K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

LẤY VÍ DỤ CỤ THỂ ĐI BẠN 

6 tháng 5 2018

Ta chứng minh: \(\frac{a}{2b}\)\(\frac{b}{2a}\)- 1 \(\ge\)\(\Leftrightarrow\) \(\frac{1}{2}\)(\(\frac{a}{b}\)\(\frac{b}{a}\)) -  1 \(\ge\)

\(\Leftrightarrow\)  (\(\frac{a}{b}\)\(\frac{b}{a}\)) -  2 \(\ge\)0   \(\Leftrightarrow\) (\(\frac{a}{b}\)+\(\frac{b}{a}\)) - 2 \(\sqrt{\frac{a}{b}\frac{b}{a}}\) \(\ge\) 0

\(\Leftrightarrow\) (\(\sqrt{\frac{a}{b}}\)-\(\sqrt{\frac{b}{a}}\))2 \(\ge\)0 , luôn đúng với mọi a, b thuộc N(đpcm).

\(\Leftrightarrow\)

8 tháng 5 2018

\(\frac{a}{2b}+\frac{b}{2a}\ge1\)

\(\frac{2a^2}{4ba}+\frac{2b^2}{4ab}\ge1\)

\(2a^2+2b^2\ge1\)( do số bình phương luôn luôn lớn hơn 0)

9 tháng 12 2016

bạn đã k đủ 3k hẹn lần sau

Bai 1. tinh chat bac cau

bai 2> a) x=+-2003

b) >x=0

c)x=y=0

18 tháng 3 2020

Giải thích các bước giải:

 a2=a.aa2=a.a

Th1 a<0

=>−a2=−(−a)(−a)−a2=−(−a)(−a)

a2>=0với mọi a a2>=0với mọi a

=> −a2=a2.(−1)<=0−a2=a2.(−1)<=0

a2a2=a.a

a<0

a2=(−a)(−a)=a2a2=(−a)(−a)=a2   >= 0 với mọi a

a>=0

a2>=0

Vt lại cho dễ hiểu

Ta có  \(\hept{\begin{cases}a^2=a.a\\-\left(a^2\right)=-\left(a.a\right)\end{cases}}\)\(\forall a\in Z\)

Th1: \(a\in Z;a\ge0\)

Khi đó a . a ≥  0

\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a.a\right)\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a^2\right)\le0\end{cases}}\) (1)

TH2: \(a\in Z;a< 0\)

Khi đó a . a > 0

\(\Leftrightarrow\hept{\begin{cases}a^2>0\\-\left(a^2\right)< 0\end{cases}}\) (2)

Từ (1) và (2) => đpcm 

T chỉ vt lại theo bài của bạn Linh thôi đóa

10 tháng 12 2017

giả sử a \(\ge\)\(\Rightarrow\)a = b + m ( m \(\ge\)0 )

do đó : \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)( a,b thuộc N* )

Dấu " = " xảy ra khi a = b 

9 tháng 8 2019

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

Áp dụng BĐT cô si ta có:\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)

LÀm tương tự ta có:

\(\hept{\begin{cases}\frac{a}{b}+\frac{b}{a}\ge2\\\frac{a}{c}+\frac{c}{a}\ge2\\\frac{c}{b}+\frac{b}{c}\ge2\end{cases}}\Rightarrowđpcm\)

Vậy GTNN của S =6 khi a=b=c