Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh: \(\frac{a}{2b}\)+ \(\frac{b}{2a}\)- 1 \(\ge\)0 \(\Leftrightarrow\) \(\frac{1}{2}\)(\(\frac{a}{b}\)+ \(\frac{b}{a}\)) - 1 \(\ge\)0
\(\Leftrightarrow\) (\(\frac{a}{b}\)+ \(\frac{b}{a}\)) - 2 \(\ge\)0 \(\Leftrightarrow\) (\(\frac{a}{b}\)+\(\frac{b}{a}\)) - 2 \(\sqrt{\frac{a}{b}\frac{b}{a}}\) \(\ge\) 0
\(\Leftrightarrow\) (\(\sqrt{\frac{a}{b}}\)-\(\sqrt{\frac{b}{a}}\))2 \(\ge\)0 , luôn đúng với mọi a, b thuộc N* (đpcm).
\(\Leftrightarrow\)
\(\frac{a}{2b}+\frac{b}{2a}\ge1\)
\(\frac{2a^2}{4ba}+\frac{2b^2}{4ab}\ge1\)
\(2a^2+2b^2\ge1\)( do số bình phương luôn luôn lớn hơn 0)
bạn đã k đủ 3k hẹn lần sau
Bai 1. tinh chat bac cau
bai 2> a) x=+-2003
b) >x=0
c)x=y=0
Giải thích các bước giải:
a2=a.aa2=a.a
Th1 a<0
=>−a2=−(−a)(−a)−a2=−(−a)(−a)
a2>=0với mọi a a2>=0với mọi a
=> −a2=a2.(−1)<=0−a2=a2.(−1)<=0
a2a2=a.a
a<0
a2=(−a)(−a)=a2a2=(−a)(−a)=a2 >= 0 với mọi a
a>=0
a2>=0
Vt lại cho dễ hiểu
Ta có \(\hept{\begin{cases}a^2=a.a\\-\left(a^2\right)=-\left(a.a\right)\end{cases}}\)\(\forall a\in Z\)
Th1: \(a\in Z;a\ge0\)
Khi đó a . a ≥ 0
\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a.a\right)\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a^2\right)\le0\end{cases}}\) (1)
TH2: \(a\in Z;a< 0\)
Khi đó a . a > 0
\(\Leftrightarrow\hept{\begin{cases}a^2>0\\-\left(a^2\right)< 0\end{cases}}\) (2)
Từ (1) và (2) => đpcm
T chỉ vt lại theo bài của bạn Linh thôi đóa
giả sử a \(\ge\)b \(\Rightarrow\)a = b + m ( m \(\ge\)0 )
do đó : \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=2\)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)( a,b thuộc N* )
Dấu " = " xảy ra khi a = b
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
Áp dụng BĐT cô si ta có:\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)
LÀm tương tự ta có:
\(\hept{\begin{cases}\frac{a}{b}+\frac{b}{a}\ge2\\\frac{a}{c}+\frac{c}{a}\ge2\\\frac{c}{b}+\frac{b}{c}\ge2\end{cases}}\Rightarrowđpcm\)
Vậy GTNN của S =6 khi a=b=c