Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 10001 số hạng 2019,20192,...,201910001
Theo nguyên lí Dirichlet co 2 số có cùng số dư khi chia co 10000
Gọi 2 số đó là 2019m và 2019n(m,n là số tự nhiên, m>n)=> 2019m-2019n=....0000
Vậy............
nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017
và dãy 2015 só bắt đầu từ A+2 đều là hợp số :
A+2;A+3;...;A+2015;A+2015;A+2017
bởi vì A+2 chia hết cho 2
A+3 chia hết cho 3
.......
A+2016 chia hết 2016
A+2017 chia hết 2017 ( ĐPCM)
tick nhé
Giả sử ta có dãy số gồm 2018 số được tạo bởi toàn chữ số 2
2; 22; 222;....;2222....22 (2018 chữ số 2)
Khi chia lần lượt các số trong dãy cho 2018 thì số dư của các phép chia nằm trong khoảng từ 1 đến 2017 (2017 số dư)
Theo nguyên lý dirichlet có ít nhất 2 số khi chia cho 2018 có cùng số dư
Giả sử có 2 số khi chia cho 2018 có cùng số dư là là
An=222.......22 (n chữ số 2)
Am=22222...22222 (m chữ số 2)
n<m
Khi đó hiệu của hai số mà khi chia cho 1 số có cùng số dư thì hiệu đó chia hết cho số chia
=> Am-An=22222..22 - 2222...2 =222222...0000 (n chữ số 0 và m-n chữ số 2) chia hết cho 2018 (dpcm)
Giải bằng tính chất Dirichlet đấy nhé các bạn
Vào câu hỏi tương tự có bài giống đấy nhé bạn ạ !