Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a là số tự nhiên >0. Giả sử m,n >0 thuộc Z để:
\(\hept{\begin{cases}2a+1=n^2\left(1\right)\\3a+1=m^2\left(2\right)\end{cases}}\)
Từ (1) => n lẻ; đặt n=2k+1, ta được
2a+1=4k2+4k+1=4k(k+1)+1
=> a=2k(k+1)
Vậy a chẵn
a chẵn => (3a+1) là số lử từ (2) => m lẻ; đặt m=2p+1
(1)+(2) được: 5a+2=4k(k+1)+1+4p(p+1)+1
=> 5a=4k(k+1)+4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
Xét các TH
+) a=5q+1 => n2=2a+1=10q+3 có chữ số tận cùng là 3 (vô lí)
+) a=5q+2 => m2=3a+1=15q+7 có chữ số tận cùng là 7 (vô lí)
+) a=5q+3 => n2=2a+1=10a+7 chữ số tận cùng là 7 (vô lí)
=> a chia hết cho 5
Mà (5;8)=1 => a chia hết cho 5.8=40 hay a là bội của 40
Vì số đó có tận cùng bằng 2 nên không là số chính phương.
bai 1 : M = 147*k (với k tự nhiên nào đó) = 3*49*k Vì M là số chính phương chia hết cho 3 nên phải chia hết cho 9 => k chia hết cho 3 => M = 9*49*k1 = 21^2*k1 = k2^2 (M là bình phương của k2) Do M có 4 chữ số nên 3 < k1 < 23. k1 = k2^2/21^2 = (k2/21)^2 vậy k1 là số chính phương => k1 = 4, 9, 16 => M = 441*k1 = 1764, 3969, 7056
Ta chọn abc sao cho
a^2 b^2 +b^2 c^2=(c^2-ab)tất cả mũ 2
=> c = a + b
ta chọn c = a + b thì :
a^2 b^2+b^2 c^2+c^2 a^2=(b^2+a^2+ab)^2
Do n \(\in\) N* nên 10n + 8 = (...0) + 8 = (...8) => 10n + 8 có chữ số tận cùng là 8 nên không thể là số chính phương (bình phương của một số tự nhiên).
Ta có : \(\sqrt{a^2}=a\)
\(\Rightarrow\sqrt{a}\ne a\)
\(\sqrt{a}\)vô tỉ
Trả lời:
+ Giả sử \(\sqrt{a}\notin I\)
\(\Rightarrow\sqrt{a}\inℚ\)
\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)
+ Vì a không là số chính phương
\(\Rightarrow\sqrt{a}\notinℕ\)
\(\Rightarrow\frac{m}{n}\notinℕ\)
\(\Rightarrow n>1\)
+ Vì \(\sqrt{a}=\frac{m}{n}\)
\(\Rightarrow a=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=an^2\)
+ Vì \(n>1\)
\(\Rightarrow\)Giả sử n có ước nguyên tố là p
Mà\(n\inℕ\)
Mà\(m^2=an^2\)
\(\Rightarrow m⋮p\)
\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)
\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai
\(\Rightarrow\sqrt{a}\in I\)
Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.
Hok tốt!
Good girl