K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Gọi UCLN ( a, a + b ) = d          ( d \(\in\)N* )

Ta có :

\(⋮\)

a + b \(⋮\)d         

Từ đó ta  có :

a + b - a \(⋮\)d  

=> b\(⋮\)d

Mà a\(⋮\)d    ; b\(⋮\)d    => d \(\in\)ƯC ( a , b )

Mặt khác ƯCLN ( a , b ) = 1 nên 1 \(⋮\)d  

Suy ra d \(\in\)Ư ( 1 ) = { 1 }        hay d = 1

Vậy nếu a, b nguyên tố cùng nhau thì a và a + b nguyên tố cùng nhau .

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

24 tháng 9 2021

Giả sử \(d\) là ước nguyên tố của \(ab\)\(a+b\).

\(\Rightarrow\) \(ab⋮d\)\(a+b⋮d\)

\(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)

Do vai trò của \(a\)\(b\) bình đẳng nên:

Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))

\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)

Do đó \(ab\)\(a+b\) không thể có ước nguyên tố chung.

\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)

Vậy \(ƯCLN\left(ab,a+b\right)=1\)

23 tháng 3 2022

Giả sử k là ước nguyên tố của a+b (k∈N)

a+b  k.

Vì a+bk⇒ak và bk

⇒k∈ƯC(a;b)⇒k∈ƯC(a;b)

Mà nếu a và b nguyên tố cùng nhau (hay (a,b)=1) thì ƯCLN(a,b)=1

⇒k=1không phải là số nguyên tố trái với giả thiết đặt ra

Do đó không tồn tại ước nguyên tố k của a+b k∈N

Do đó a+b nguyên tố cùng nhau

26 tháng 3 2022

rồi sao nữa ạ

29 tháng 11 2015

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

tick nha!

29 tháng 11 2015

CHTT nha Lê Nguyễn Bảo Trân