K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

X+ 4x + 10 

=(x + 4x +4) + 6

=( x+2)+6  lớn hơn hoặc bằng 6 nên luôn dương

20 tháng 7 2016

\(x^2+4x+10=x^2+4x+2^2+6=\left(x+2\right)^2+6\ge6\)

Vậy biểu thức trên luôn dương với mọi x

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

21 tháng 7 2017

a)

\(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5>0\)

b)

\(4x^2+4x+2017=4\left(x^2+x\right)+2017=4\left(x+\frac{1}{2}\right)^2-1+2017=4\left(x+\frac{1}{2}\right)^2+2016>0\)

c)

\(10-6x+x^2=x^2-6x+10=\left(x-3\right)^2-9+10=\left(x-3\right)^2+1>0\)

d)

\(1-x+x^2=x^2-x+1=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

4 tháng 9 2018

Thay x=2 zô xem, ra số âm

14 tháng 8 2019

\(a,A=4x^2-20x+27=\left(2x\right)^2-2.2x.5+5^2+2\)\(=\left(2x-5\right)^2+2\)

Mà \(\left(2x-5\right)^2\ge0\Rightarrow\left(2x-5\right)^2+2>0\Rightarrow A>0\)

\(b,B=x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)\(=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\)

Mà \(\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow B>0\)

\(c,C=x^2+4x+y^2-6y+15=x^2+4x+4+y^2-6y+9+2\)

\(\left(x+2\right)^2+\left(y-3\right)^2+2\)

Mà \(\left(x+2\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+2>0\Rightarrow C>0\)

6 tháng 7 2018

1/

\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)

\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)

\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)

2/

\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)

\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)

\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)

15 tháng 9 2019

\(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Mà 1>0 

\(\Rightarrow x^2-6x+10\) luôn dương \(\forall x\left(đpcm\right)\)