Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=4x^2-20x+27\)
\(A=\left(2x\right)^2-2\cdot2x\cdot5+25+2\)
\(A=\left(2x-5\right)^2+2\ge2>0\forall x\)
=> đpcm
b) \(B=x^2+x+1\)
\(B=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
=> đpcm
c) \(C=x^2+4x+y^2-6y+15\)
\(C=\left(x^2+4x+4\right)+\left(y^2-6y+9\right)+2\)
\(C=\left(x+2\right)^2+\left(y-3\right)^2+2\ge2>0\forall x;y\)
=> đpcm
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
\(a)x^2-2x+y^2+4y+6\\=(x^2-2x+1)+(y^2+4y+4)+1\\=(x^2-2\cdot x\cdot1+1^2)+(y^2+2\cdot y\cdot2+2^2)+1\\=(x-1)^2+(y+2)^2+1\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
hay giá trị của biểu thức trên luôn dương
\(b)x^2-2x+2\\=(x^2-2x+1)+1\\=(x^2-2\cdot x\cdot1+1^2)+1\\=(x-1)^2+1\)
Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)
hay giá trị của biểu thức trên luôn dương
`A=x^2 -4x+18`
`=x^2 -4x+4+14`
`=(x-2)^2 +14`
Có `(x-2)^2 >=0 AAx`
`=> (x-2)^2 +14>= 14>0 AAx`
Vậy ....
`B=x^2 -x+2`
`=x^2 -x+1/4+7/4`
`=(x-1/2)^2 +7/4`
có `(x-1/2)^2 >=0 AAx`
`=> (x-1/2)^2 +7/4>=7/4>0 AAx`
Vậy ...........
`C=x^2 +2y^2 -2xy-2y+15`
`=x^2 -2xy+y^2 +y^2 -2y+1+14`
`=(x-y)^2 +(y-1)^2 +14`
Có `(x-y)^2 >=0 AAx,y` ; `(y-1)^2 >=0 AAy`
`=>(x-y)^2 +(y-1)^2 +14 >=14>0 AAx;y`
Vậy
Câu hỏi của ĐỖ THỊ HƯƠNG TRÀ - Toán lớp 8 - Học trực tuyến OLM
mình làm rồi nhé, bạn kham khảo link
A = x^2 - 2x.7/2 + 49 / 4 +3/4 =(x - 7/2)^ 2 +3/4 >0
B, Phá ngoặc sau làm tuwowg tự
C dua ve hằng đẳng thức
\(a,A=4x^2-20x+27=\left(2x\right)^2-2.2x.5+5^2+2\)\(=\left(2x-5\right)^2+2\)
Mà \(\left(2x-5\right)^2\ge0\Rightarrow\left(2x-5\right)^2+2>0\Rightarrow A>0\)
\(b,B=x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)\(=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\)
Mà \(\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow B>0\)
\(c,C=x^2+4x+y^2-6y+15=x^2+4x+4+y^2-6y+9+2\)
\(\left(x+2\right)^2+\left(y-3\right)^2+2\)
Mà \(\left(x+2\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+2>0\Rightarrow C>0\)