Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
Mà: \(\left\{\begin{matrix}\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{10a+b+10b+c}{a+b}=9a+10b+c\\\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{10b+c+10c+a}{b+c}=9b+10c+a\\\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{10c+a+10a+b}{c+a}=9c+10a+b\end{matrix}\right.\)
\(\Rightarrow9a+10b+c=9b+10c+a=9c+10a+b\)
\(\Rightarrow\left\{\begin{matrix}9a=9b=9c\\10b=10c=10a\\c=a=b\end{matrix}\right.\)\(\Rightarrow a=b=c\)
Vậy \(a=b=c\) (Đpcm)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)
=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)
giải
biến đổi đẳng thức thành
\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)
\(\overline{ab}.c=1001\div11=91\)
phân tích ra thừa số nguyên tố \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là \(13.7\)hoặc \(91.1\)
th1 cho \(\overline{ab}=13,c=7\)
th2 cho \(\overline{ab}=91,c=1\)loại vì b=c
vậy ta có \(13.77.137=137137\)
Sửa một chút nhé:
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)
<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)
<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)
<=> \(\overline{ab}.c.11=1001\)
<=> \(\overline{ab}.c=91\)
Bài 2 sau khi đã sửa đề thành $5x=7z$:
Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)
\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)
Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$
$\Rightarrow x=21k; y=14k; z=15k$
Khi đó:
$x-2y+z=32$
$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$
$\Rightarrow x=21k=84; y=14k=56; z=15k=60$
Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.
Bài 3:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)
\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)
\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)
Ta có:
\(\overline{abcabc}=1001\overline{abc}\)
\(=143.7.\overline{abc}\)
\(\Rightarrow1001\overline{abc}⋮7\Rightarrow\overline{abcabc}⋮7\)
\(\rightarrowđpcm\)
\(\overline{aaa}=111a\)
\(=37.3.a\)
\(\Rightarrow111a⋮37\Rightarrow\overline{aaa}⋮37\)
\(\rightarrowđpcm\)
\(\overline{1ab1}-\overline{1ba1}\)
\(=1000+\overline{ab}+1-1000-\overline{ba}-1\)
\(=\overline{ab}-\overline{ba}\)
\(=10a+b-10b-a\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
Mà \(\overline{1ab1}-\overline{1ba1}=\overline{...0}⋮10\)
\(\Rightarrow\overline{1ab1}-\overline{1ba1}⋮9;10\Rightarrow⋮90\)
\(\rightarrowđpcm\)
bn ơi câu b mk ghi nhầm đề là 4 chữ a mới đúng bn giải lại giùm mk nhoa