Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.\left(49+7-1\right)\)
\(=7^4.55\) \(⋮\) \(55\)
=> đpcm
Bài 2:
Ta có:
\(\left(-32\right)^9=-\left(2^5\right)^9=-2^{45}=-2^{13}.2^{32}\)
\(\left(-18\right)^{13}=-2^{13}.\left(3^2\right)^{13}=-2^{13}.3^{26}\)
Lại thấy: \(3^{26}>3^{24}=27^8>16^8=2^{32}\)
=> \(-2^{13}.2^{32}>-2^{13}.3^{26}\)
=> \(\left(-32\right)^9>\left(-18\right)^{13}\)
Bài làm :
Bài 1 :
Ta có ;
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55=7^4.11.5⋮11\)
=> Điều phải chúng minh .
Bài 2 :
Ta có :
- (-32)9 = -(25)9 = -245
- (-18)13 < (-16)13 = (-24)13 = -252
Vì -245 > -252 =>(-32)9 > (-18)13
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
a)
$7^6+7^5-7^4=7^4(7^2+7-1)=7^4.55$ chia hết cho $55$.
b) Áp dụng $a^n+b^n$ sẽ chia hết cho $a+b$ với $n$ lẻ.
$16^5+2^{15}=16^5+8^5$ sẽ chia hết cho $16+5=24$ nên sẽ chia hết cho $3$.
Giờ chỉ cần chứng minh cái đó chia hết cho $11$.
Thật vậy:
$16^5 \equiv 5^5 \equiv 1(mod 11)
\\2^{15} \equiv (2^5)^3 \equiv 32^3 \equiv (-1)^3 \equiv -1 (mod 11)
\\\Rightarrow 16^5+2^{15} \equiv 1-1=0(mod 11)$
Do đó có đpcm
\(A=7^6+7^5-7^4\)
\(A=7^4.7^2+7^4.7-7^4.1\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4.55\)
\(A⋮55\rightarrowđpcm\)
\(B=16^5+2^{15}\)
\(B=\left(2^4\right)^5+2^{15}\)
\(B=2^{20}+2^{15}\)
\(B=2^{15}.2^5+2^{15}.1\)
\(B=2^{15}\left(2^5+1\right)\)
\(B=2^{15}.33\)
\(B⋮33\rightarrowđpcm\)
Bài 1:
a: \(=5^2\left(5^3-5^2+1\right)=5^2\cdot101⋮101\)
b: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)
10^6 - 5^7
= (2^6 x 5^6) - 5^7
= 5^6 x (2^6 - 5)
= 5^6 x 59
vậy nó chia hết cho 59.
10^6-5^7
=5^6.2^6-5^7
=5^6.2^6-5^6.5
=5^6.(2^6-5)
=5^6.59 chia hết cho 59
a) \(\frac{75^3.3^7}{81^4.5^6}=\frac{5^3.3^3.5^3.3^7}{\left(3^4\right)^4.5^6}=\frac{5^6.3^3.3^7}{3^{16}.5^6}=\frac{3^{10}}{3^{16}}=\frac{1}{3^6}=\frac{1}{729}\)
b) \(\frac{6^6.4^2}{3^{12}.2^8}=\frac{2^6.3^6.\left(2^2\right)^2}{3^{12}.2^8}=\frac{2^6.3^6.2^4}{3^{12}.2^8}=\frac{2^{10}.3^6}{3^{12}.2^8}=\frac{2^2.1}{3^6}=\frac{4}{729}\)
c) \(\frac{34^5.2^5}{2^{14}.17^5}=\frac{2^5.17^5.2^5}{2^{14}.17^5}=\frac{2^{10}}{2^{14}}=\frac{1}{2^4}=\frac{1}{16}\)
7^6 + 7^5 - 7^4
= 7^4(7^2 + 7 - 1)
= 7^4.55 ⋮ 55
=> đpcm
\(7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.\left(49+7-1\right)\)
\(=7^4.55⋮55\)
\(\Rightarrow7^6+7^5-7^4⋮55\left(dpcm\right)\)