Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 49 + 105 + 399 chia hết cho 7
Vì 49 chia hết cho 7
105 chia hết cho 7
399 chia hết cho 7
=> 49 + 105 + 399 chia hết cho 7
b ) 84 + 48 + 120 không chia hết cho 8
Vì 84 không chia hết cho 8
48 chia hết cho 8
120 chia hết cho 8
=. 84 + 48 + 120 không chia hết cho 8
c ) ab - ba = 10a + b - 10b - a
= 9a - 9b
= 9 ( a - b )
Vì 9 chia hết cho 9
=> 9 ( a - b ) chia hết cho 9
Vậy ab - ba chia hết cho 9
d ) 2 5 . 15 - 2 6
= 2 5 ( 15 - 2 )
= 2 5 . 13
Vì 13 chia hết cho 13
=> 2 5 . 13 chia hết cho 13
Vậy 2 5 . 15 - 2 6 vhia hết cho 13
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
\(ab+ba=(10a+b)+(10b+a)\)
\(=10a+b+10b+a\)
\(=11a+11b\)
\(=11\left(a+b\right)\)
\(a+b\inℕ\Rightarrow ab+ba⋮11\)
\(A=2+2^2+2^3+\cdot\cdot\cdot+2^{2008}\)
\(\Rightarrow2A=2^2+2^3+2^4+\cdot\cdot\cdot+2^{2009}\)
\(\Rightarrow2A-A=\left(2^2+\cdot\cdot\cdot2^{2009}\right)-\left(2+\cdot\cdot\cdot+2^{2008}\right)\)
\(\Rightarrow A=2^{2009}-2\)
a ) 49 + 105 + 399 chia hết cho 7
Vì 49 chia hết cho 7
105 chia hết cho 7
399 chia hết cho 7
=> 49 + 105 + 399 chia hết cho 7
b ) 84 + 48 + 120 không chia hết cho 8
Vì 84 không chia hết cho 8
48 chia hết cho 8
120 chia hết cho 8
=> 84 + 48 + 120 không chia hết cho 8
c ) Ta có :
ab - ba = 10a + b - 10b - a
= 9a - 9b
= 9 ( a - b )
Vì 9 chia hết cho 9 => 9 ( a - b ) chia hết cho 9
Vậy ab - ba chia hết cho 9
d ) Ta có :
2 5 . 15 - 2 6
= 2 5 ( 15 - 2 )
= 2 5 . 13
Vì 13 chia hết cho 13
=> 2 5 . 13 chia hết cho 13
Vậy 2 5 . 15 - 2 6 chia hết cho 13
a, 49+105+399 chia hết cho 7 vì:
49 chia hết cho 7
105 chia hết cho 7
399 chia hết cho 7
=>49 + 105 + 399 chia hết cho 7.
b, 84+48+120 ko chia hết cho 8
48 chia hết cho 8
120 chia hết cho 8
Nhưng 84 ko chia hết cho 8
=> 84+48+120 chia hết cho 8