K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

3x2 - 6x + 4

= 3( x2 - 2x + 1) + 1

= 3( x - 1)2 + 1

Do : 3( x - 1)2 lớn hơn hoặc bằng 0 với mọi x thuộc R

=> 3( x - 1)2 + 1 > 0 với mọi x thuộc R

18 tháng 12 2017

Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)

\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)

\(A=3\left(x^2-2x+1\right)+1\)

\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)

14 tháng 12 2016

\(A=2x^2+4y^2+4xy-6z+10\)

\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)

   \(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow A\ge0+0+1=1>0\)

Vậy ...

9 tháng 12 2017

\(x^2-x+1>0\)

\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)

\(\RightarrowĐPCM\)

9 tháng 12 2017

Mọi ng giúp em

1 tháng 11 2017

đặt A = x^2 + 3 - x

\(A=x^2+3-x\\ =x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}-\dfrac{1}{4}+3\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

vậy Min A = \(\dfrac{11}{4}\) khi x = \(\dfrac{1}{2}\)

vậy A > 0 với mọi x thuộc R

Ta có: \(x^2+3-x\)

\(=x^2-x+3\)

\(=x^2-2\cdot x\cdot1,5+2,25+0,75\)

\(=\left(x-1,5\right)^2+0,75\)

\(\left(x-1,5\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1,5\right)^2+0,75\ge0,75>0\forall x\)

Vậy \(x^2+3-x>0\forall x\in R\)

20 tháng 8 2018

a) Ta có:

\(x^2+2xy+y^2+1\)

\(=\left(x+y\right)^2+1\)

\(\left(x+y\right)^2\ge0\) với mọi x và y

\(\Rightarrow\left(x+y\right)^2+1\ge1\)

\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x

b) Ta có:

\(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

8 tháng 8 2021

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c

8 tháng 8 2021

hình như sai đề rồi ạ, đề của em là a2 + b2 - ca - cb = 0 ạ

2 tháng 4 2017

Bài này khó dữ chị ơi! Em chỉ mới học lớp 4! Sorry chị nha!

2 tháng 4 2017

em bó tay.com. vn

em mới lớp 5 thui chị ơi

2 tháng 1 2018

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)

17 tháng 9 2021

a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)

b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)

c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)