Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Chứng minh với mọi số nguyên dương n thì
3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10
Giải
3^n + 2 – 2^n + 2 + 3^n – 2^n
= 3^n+2 + 3^n – 2^n + 2 - 2^n
= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )
= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )
= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )
= 3^n . 10 – 2^n . 5
= 3^n.10 – 2^n -1.10
= 10.( 3^n – 2^n-1)
Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10
3n+2-2n+2 +3n-2n
=(3n+2+3n)+(-2n+2 -2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1)chia hết cho 10
Vậy 3n+2-2n+2 +3n-2n chia hết cho 10
\(=n\left(2n^2+3n+1\right)=n\left(n+1\right)\left(2n+1\right)\)
(Đặt thừa số chung nhẩm nghiệm đa thức bậc 2 có 1 nghiệm là -1, thực hiện phép chia đa thức bậc 2 cho n+1)
\(=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)
Ta nhận thấy n(n+1)(n+2) và (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp bao giờ cũng có ít nhất 1 số chẵn => hai tích trên chia hết cho 2 => Tổng 2 tích trên chia hết cho 2 nên đa thức đã cho chia hết cho 2
Chứng minh bài toán phụ 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3:
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2
+ Nếu a chia hết cho 3 thì bài toán đúng
+ Nếu a chia 3 dư 1 thì a=3k+1 => a+2 = 3k+1+2=3k+3 chia hết cho 3
+ Nếu a chia 3 dư 2 thì a=3k+2 => a+1=3k+2+1=3k+3 chia hết cho 3
=> 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
Áp dụng vào bài toán thì 2 tích trên chia hết cho 3 => tổng 2 tích chia hết cho 3 nên đa thức đã cho chia hết cho 3
Đa thức đã cho đồng thời chia hết cho cả 2 và 3 nên chia hết cho 2.3=6
xin lỗi nha, bạn giải hình như là cách lớp lớn, mình chẳng hiểu gì hết. Sorry nhưng mình không chọn bạn được, xin lỗi nha!!!
=\(3^n.9+3^n.3+2^n.8+2^n\)
\(=3^n\left(3+9\right)+2^n\left(8+1\right)\)
\(=3^n.12+2^n.9\)
\(=\left(3.2\right)^n+\left(12+9\right)=6^n+21\)
=>\(3^{n+2}+3^{n+1}+2^{n+3}+2^n\) chia hết cho 6
Ta có: 3n+2+3n+1+2n+3+2n=3n.32+3n.31+2n-1+4+2n-1+1
=3n.9+3n.3+2n-1.24+2n-1.21
=3n.9+3n.3+2n-1.16+2n-1.2
=3n.(9+3)+2n-1.(16+2)
=3n.12+2n-1.18
=3n.2.6+2n-1.3.6
=(3n.2-2n-1.3).6 chia hết cho 6
Vậy 3n+2+3n+1+2n+3+2n chia hết cho 6