Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)
\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).
Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N
Nên ta có ĐPCM.
a^2 + b^2 + c^2= ab + bc + ca
2 ( a^2 + b^2 + c^2 ) = 2 ( ab + bc + ca)
2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
a^2 + a^2 + b^2 + b^2 + c^2+ c^2 – 2ab – 2bc – 2ca = 0
a^2 + b^2 – 2ab + b^2 + c^2 – 2bc + c² + a² – 2ca = 0
(a^2 + b^2 – 2ab) + (b^2 + c^2 – 2bc) + (c^2 + a^2 – 2ca) = 0
(a – b)^2 + (b – c)^2 + (c – a)^2 = 0
Vì (a-b)^2 lớn hơn hoặc bằng 0 với mọi a và b
(b-c)^2 lớn hơn hoặc bằng 0 với mọi c và b
(c-a)^2 lớn hơn hoặc bằng 0 với mọi a và c
=> (a-b)^2 =0 ; (b-c)^2=0 ; (c-a)^2=0
=> a=b ; b=c ; c=a
=>a=b=c
a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)
\(=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)
\(=0\)
b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}-2^{n+1}\right)-3^{2n+2}+2^{2n+2}\)
\(=3^{2n+2}-2^{2n+2}-3^{2n+2}+2^{2n+2}\)
\(=0\)
a,
\(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)
\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)
\(=2.2^{n-1}+2.2^{n+4}=2^n+2^{n+5}\)
b,
\(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)
\(=\left(3^{n+1}\right)^2-\left(2.2^n\right)^2-\left(3^{n+1}\right)^2+\left(2^{n-2+3}\right)^2\)
\(=-2^{n+1}+2^{n+1}=0\)
\(1-\dfrac{3}{n\left(n+2\right)}=\dfrac{n\left(n+2\right)-3}{n\left(n+2\right)}=\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(\Rightarrow M=\dfrac{1.5}{2.4}.\dfrac{2.6}{3.5}.\dfrac{3.7}{4.6}...\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{5.6.7...\left(n+3\right)}{4.5.6...\left(n+2\right)}\)
\(=\dfrac{1}{n}.\dfrac{n+3}{4}=\dfrac{n+3}{4n}=\dfrac{1}{4}+\dfrac{3}{4n}>\dfrac{1}{4}\) (đpcm)
Lời giải:
Đặt biểu thức đã cho là $A$
Ta viết lại biểu thức thành:
\(A=(3^{n+1}-2^{n+1})(3^{n+1}+2^{n+1}).3^{2(n+1)}+(2^{n+1}.3^{n+1})^2\)
Đặt \(3^{n+1}=a; 2^{n+1}=b\Rightarrow A=(a-b)(a+b)a^{2}+(ba)^2\)
\(=(a^2-b^2)a^2+a^2b^2=a^4=(a^2)^2\)
Do đó biểu thức đã cho là một số chính phương.
Ta có đpcm.