K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Ta có: \(2019^{2020}=\left(2019\right)^{2.1010}=4038^{1010}⋮4038\)

\(2019^{2019}⋮4038̸\)

=> \(2019^{2020}-2019^{2019}⋮4038̸\)( Áp dụng tính chất một hiệu chia hết cho 1 số ) ( Vô lí )

Vậy đề bài bị sai.

3 tháng 1 2020

Dấu không chia hết bị lỗi đó bạn

15 tháng 2 2019

Bạn chứng minh cái này : a2n+1 + b2n+1 \(⋮\)a + b    ; an - bn \(⋮\)a - b 

Ta có : 20182019 + 20202019 = ( 20182019 + 1 ) + ( 20202019 - 1 ) 

20182019 + 1 \(⋮\)( 2018 + 1 ) = 2019 ;  20202019 - 1 \(⋮\)( 2010 - 1 ) = 2019

\(\Rightarrow\) 20182019 + 20202019 \(⋮\) 2019 

6 tháng 4 2020

Xin chào bạn ! Mình là youtuber PUBG Takaz đây !

8 tháng 5 2019

Ta chứng minh 1 bổ đề sau: Với a;b lớn hơn hoặc bằng 1 thì \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Thật vậy: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow a^2+a^3b+b^2+b^3a+2+2ab\ge2a^2+2b^2+2a^2b^2+2\)

\(\Leftrightarrow a^3b+b^3a+2ab-a^2-b^2-2a^2b^2\ge0\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)(đúng với a;b>=1)

Trở lại bđt trong bài: \(\frac{2019}{2019+x^2}+\frac{2019}{2019+y^2}\ge\frac{4038}{2019+xy}\)

\(\Leftrightarrow\frac{1}{2019+x^2}+\frac{1}{2019+y^2}\ge\frac{2}{2019+xy}\) bđt này tương tự với bđt vừa cm trong bài,với x;y là hoán vị của a;b và 2019 có vai trò như 1

26 tháng 8 2018

Ta có: 352019-352018 = 352018(35-1)

= 352018.34

Vì 34 chia hết cho 17 nên suy ra 352018.34 chia hết cho 17

Vậy 352019-352018 chia hết cho 17.

1 tháng 5 2019

Ta có: \(\hept{\begin{cases}x^{2019}\le x^{2020}\\y^{2019}\le y^{2020}\end{cases}}\)

\(\Rightarrow x^{2019}+y^{2019}\le x^{2020}+y^{2020}\)

( em ko biết đúng hay sai làm theo cách hiểu của em thôi )