\(\frac{2019}{2019+x^2}+\frac{2019}{2019+y^2}\ge\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Ta chứng minh 1 bổ đề sau: Với a;b lớn hơn hoặc bằng 1 thì \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Thật vậy: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow a^2+a^3b+b^2+b^3a+2+2ab\ge2a^2+2b^2+2a^2b^2+2\)

\(\Leftrightarrow a^3b+b^3a+2ab-a^2-b^2-2a^2b^2\ge0\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)(đúng với a;b>=1)

Trở lại bđt trong bài: \(\frac{2019}{2019+x^2}+\frac{2019}{2019+y^2}\ge\frac{4038}{2019+xy}\)

\(\Leftrightarrow\frac{1}{2019+x^2}+\frac{1}{2019+y^2}\ge\frac{2}{2019+xy}\) bđt này tương tự với bđt vừa cm trong bài,với x;y là hoán vị của a;b và 2019 có vai trò như 1

3 tháng 2 2019

Sửa đề : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2019}\)

Thay \(2019=x+y+z\)ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{z}{z\left(x+y+z\right)}-\frac{x+y+z}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\left(x+y\right)\)

\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)+xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+y+z\right)+xy\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)

( mình chỉ xét 1 t/h, các t/h còn lại hoàn toàn tương tự )

TH1 : \(x+y=0\)

\(\Leftrightarrow x=-y\)(1)

Thay (1) vào A ta có :

\(A=\frac{1}{-y^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)

\(A=\frac{1}{z^{2019}}\)

Mặt khác : \(x+y+z=2019\)

Thay (1) vào đẳng thức trên ta được : \(-y+y+z=2019\)

\(\Leftrightarrow z=2019\)

Thay z vào A ta được : \(A=\frac{1}{2019^{2019}}\)

3 tháng 2 2019

sửa đền nha:\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=\(\frac{1}{2019}\)

30 tháng 6 2019

\(P=\frac{2020}{x^2+y^2}+\frac{2019}{xy}\)

\(P=\frac{2020}{\left(x+y\right)^2-2xy}+\frac{2019}{xy}\)

\(P=\frac{-2020}{2xy-4}+\frac{2019}{xy}\)

\(P=\frac{-1010}{xy-2}+\frac{2019}{xy}\)

Áp dụng bđt AM-GM : \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{4}{4}=1\)

\(P\ge\frac{-1010}{1-2}+\frac{2019}{1}=3029\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

1 tháng 7 2019

Bonking cách em nè:)Gọn hơn xíu:v

\(P=\frac{2020}{x^2+y^2}+\frac{1010}{xy}+\frac{1009}{xy}\)\(=2020\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1009}{xy}\)

\(\ge\frac{2020.4}{\left(x+y\right)^2}+\frac{1009}{\frac{\left(x+y\right)^2}{4}}=2020+1009=3029\)

Đẳng thức xảy khi x = y = 1

Vậy..

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)=> \(\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

=> (x+y+z)(xy+yz+zx) = xyz

=> \(x^2y+xy^2+y^2z+yz^2+zx^2+z^2x+2xyz=0\)

=> (x+y)(y+z)(z+x) = 0

=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

TH1: x = -y

=> \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{\left(-y\right)^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)

=> \(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{\left(-y\right)^{2019}+y^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)

=> ĐPCM

Tương tự với TH2 và TH3

13 tháng 11 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)

Nếu 

\(x=-y\Rightarrow\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}}-\frac{1}{x^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)

\(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{x^{2019}-x^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)

Tương tự các TH còn lại nha!

P/S:Có 1 bài chặt hơn ntnày:

Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.

20 tháng 3 2021

Ta có: \(x^3+y^3+z^3=3xyz\)

   \(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

   \(\Leftrightarrow\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3xy\left(x+y\right)-3xyz=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left[\left(x+y+z\right)^2-3.\left(x+y\right).z\right]-3xy\left(x+y+z\right)=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2zx-3xz-3yz-3xy\right)=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2-xz-yz-xy\right)=0\)

\(x+y+z=0\)\(\Rightarrow\)\(C=\frac{x^{2019}+y^{2019}+z^{2019}}{0}\)( Loại )

\(x^2+y^2+z^2-xz-yz-xy=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xz-2yz-2xy=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\)\(x=y=z\)

\(\Rightarrow\)\(C=\frac{x^{2019}+x^{2019}+x^{2019}}{\left(x+x+x\right)^{2019}}=\frac{3.x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)

Vậy.......

20 tháng 3 2021

Từ x3 + y3 + z3 = 3xyz

=> ( x + y + z )( x2 + y2 + z2 - xy - yz - xz ) = 0 ( phân tích như bạn kia )

Vì x + y + z ≠ 0

=> x2 + y2 + z2 - xy - yz - xz = 0

<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0

<=> ( x - y )2 + ( y - z )2 + ( x - z )2 = 0

VT ≥ 0 ∀ x,y,z. Đẳng thức xảy ra <=> x=y=z

Khi đó \(C=\frac{x^{2019}+y^{2019}+z^{2019}}{\left(x+y+z\right)^{2019}}=\frac{3x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}\cdot x^{2019}}=\frac{1}{3^{2018}}\)