Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)
\(x^4+y^4+y^4+z^4\geq 4xy^2z\)
\(x^4+y^4+z^4+z^4\geq 4xyz^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)
Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$
Do đó:
\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)
2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x
=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3
2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y
x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)
2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25
(b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100
Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\cdot1=2\ge\left(x+y\right)^2\)
Đẳng thức xảy ra khi \(x=y=\pm\dfrac{1}{\sqrt{2}}\)
\(f\left(x\right)=x^{2018}\left(x^2-2x-1\right)+5\left(x^2-2x-1\right)+8\)
Với \(x=1-\sqrt{2}\) ta có:
\(x^2-2x-1=\left(1-\sqrt{2}\right)^2-2\left(1-\sqrt{2}\right)-1\)
\(=3-2\sqrt{2}-2+2\sqrt{2}-1=0\)
\(\Rightarrow f\left(1-\sqrt{2}\right)=\left(1-\sqrt{2}\right)^{2018}.0+5.0+3=3\)
\(5a^2+5b^2+8ab-2a+2b+2=0\)
\(\Leftrightarrow4a^2+4b^2+8ab+a^2-2a+1+b^2-2b+1=0\)
\(\Leftrightarrow\left(2a+2b\right)^2+\left(a-1\right)^2+\left(b+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2a+2b=0\\a-1=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a\cdot1+2\left(-1\right)=0\left(tm\right)\\a=1\\b=-1\end{cases}}}\)
Thay a, b vào B ta được :
\(B=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}\)
\(B=0^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(B=-1\)
Ta có: \(\hept{\begin{cases}x^{2019}\le x^{2020}\\y^{2019}\le y^{2020}\end{cases}}\)
\(\Rightarrow x^{2019}+y^{2019}\le x^{2020}+y^{2020}\)
( em ko biết đúng hay sai làm theo cách hiểu của em thôi )