Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1+2+3+....+n-7=\frac{n(n+1)}{2}-7=\frac{n^2+n-14}{2}$
Để chứng minh $A\not\vdots 10$, ta chỉ ra $A\not\vdots 5$
Nếu $n\vdots 5$ thì hiển nhiên $n^2+n-14\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+1(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+1)^2+5k+1-14=25k^2+15k-12\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+2(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+2)^2+5k+2-14=25k^2+25k-8\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+3(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+3)^2+5k+3-14=25k^2+35k-2\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+4(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+4)^2+5k+4-14=25k^2+45k+6\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Vậy $A\not\vdots 5$ nên $A\not\vdots 10$
Chia het cho may thi minh cung ko biet lam vi minh moi lop 5
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
tong 1+2+3+...+n=(n+1)n/2 . vi n(n+1) la 2 so tu nhien lien tiep nen tan cung bang 0;2;6 suy ra N=1+2+3+4+5+...+n-7= (n+1)n/2-7
suy ra N tan cung bang 3;4;6 suy ra khong chia het cho 10
Vay con n.(n+1) con phai chia cho 2 nua