Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì một số khi chia cho 4 có thể dư 0;1;2;3 nên theo nguyên lí Đi rích lê thì trong 4 số tự nhiên liên tiếp có ít nhất một số chia hết cho 4, do đó tích trên chia hết cho 4, mà 4 chia hết cho 2 nên tích trên cũng chia hết cho2.
Tương tự với 3 nhé
+) CHC ( chia hết cho ) 2 :
Vì n ; n+1 ; n+2 và n+3 là 4 số liên tiếp
=> có 2 số chẵn
=> CHC 2 ( đpcm )
\(1+2+2^2+2^3+2^4+...+2^{22}+2^{23}\Leftrightarrow\left(1+2\right)+2^2\left(1+2\right)+...+2^{22}\left(1+2\right)\)
\(\Rightarrow3+2^2\cdot3+...2^{22}\cdot3\Leftrightarrow3\cdot\left(2^0+2^1+...+2^{22}\right)⋮3\left(đpcm\right)\)
\(\Rightarrow3\cdot\frac{\left(2^0+2^1+...+2^{22}\right)}{7}\Leftrightarrow3\cdot7\left(2^0+2^1+2^2\right)⋮3,7\left(đpcm\right)\)
a: \(=5^{2003}\left(5^2-5+1\right)\)
\(=5^{2003}\cdot21⋮7\)