K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2023

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

3 tháng 12 2016

Do 6= 2.3

nên a.2-1 chia hết cho 2 và 3

Mà a.2 có tận cùng là chữ số lẻ nên a.2-1 chia hết cho 2

=> a2-1 chia hết cho 3 

Vậy a2-1  chia hết cho 6

4 tháng 4 2022

Bạn trên làm sai rồi!

Mình làm(Đã được thầy chữa 100%)

Ta có a là 1 số lẻ => a không chia hết cho 2

Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)

=> a sẽ có dạng 6k+1 hoặc 6k + 5

Khi a = 6k+1, ta có:

a2-1 = (6k+1)2 - 1

        = (6k+1).(6k+1)-1

        = (6k+1).6k + (6k+1).1 -1

        = 36k2 + 6k + 6k + 1 -1

        = 36k2 + 6k + 6k = 36k2 + 12k

        = 6(6k2 + 2k)

        => a2-1 chia hết cho 6

Khi a = 6k+5, ta có:

a2- 1 = (6k + 5)2- 1

         = (6k + 5).(6k+5)-1

         = (6k + 5).6k + (6k + 5).5 - 1

         = 36k2 + 30k + 30k + 24

         = 6(6k2 + 5k + 5k + 4)

         => a2-1 chia hết cho 6

@Trịnh Đức Anh

6 tháng 9 2015

nhìu dzữ @@

6 tháng 9 2015

 Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

a lẻ nên a=2k+1

(a-1)(a+1)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\)

\(=4k\left(k+1\right)\)

Vì k;k+1 là hai số tự nhiên liên tiếp

nên \(k\left(k+1\right)⋮2\)

=>\(4k\left(k+1\right)⋮\left(4\cdot2\right)=8\)

=>\(\left(a-1\right)\left(a+1\right)⋮8\)

Vì a không chia hết cho 3 nên a=3c+1 hoặc a=3c+2

TH1: a=3c+1

\(\left(a-1\right)\left(a+1\right)\)

\(=\left(3c+1-1\right)\left(3c+1+1\right)\)

\(=3c\left(3c+2\right)⋮3\left(1\right)\)

TH2: a=3c+2

\(\left(a-1\right)\left(a+1\right)\)

\(=\left(3c+2-1\right)\left(3c+2+1\right)\)

\(=\left(3c+3\right)\left(3c+1\right)\)

\(=3\left(c+1\right)\left(3c+1\right)⋮3\left(2\right)\)

Từ (1) và (2) suy ra \(\left(a-1\right)\left(a+1\right)⋮3\)

mà \(\left(a-1\right)\left(a+1\right)⋮8\)

và ƯCLN(3;8)=1

nên \(\left(a-1\right)\left(a+1\right)⋮\left(3\cdot8\right)=24\)

13 tháng 6 2016

hay

15 tháng 6 2016

hay cái con khí nhà ông đó Nguyễn Hoàng Nam

13 tháng 3 2022

qqqqqqqqqqqqqq