Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
Do 6= 2.3
nên a.2-1 chia hết cho 2 và 3
Mà a.2 có tận cùng là chữ số lẻ nên a.2-1 chia hết cho 2
=> a2-1 chia hết cho 3
Vậy a2-1 chia hết cho 6
Bạn trên làm sai rồi!
Mình làm(Đã được thầy chữa 100%)
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
@Trịnh Đức Anh
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
a lẻ nên a=2k+1
(a-1)(a+1)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\)
\(=4k\left(k+1\right)\)
Vì k;k+1 là hai số tự nhiên liên tiếp
nên \(k\left(k+1\right)⋮2\)
=>\(4k\left(k+1\right)⋮\left(4\cdot2\right)=8\)
=>\(\left(a-1\right)\left(a+1\right)⋮8\)
Vì a không chia hết cho 3 nên a=3c+1 hoặc a=3c+2
TH1: a=3c+1
\(\left(a-1\right)\left(a+1\right)\)
\(=\left(3c+1-1\right)\left(3c+1+1\right)\)
\(=3c\left(3c+2\right)⋮3\left(1\right)\)
TH2: a=3c+2
\(\left(a-1\right)\left(a+1\right)\)
\(=\left(3c+2-1\right)\left(3c+2+1\right)\)
\(=\left(3c+3\right)\left(3c+1\right)\)
\(=3\left(c+1\right)\left(3c+1\right)⋮3\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a-1\right)\left(a+1\right)⋮3\)
mà \(\left(a-1\right)\left(a+1\right)⋮8\)
và ƯCLN(3;8)=1
nên \(\left(a-1\right)\left(a+1\right)⋮\left(3\cdot8\right)=24\)