K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2022

cm: ∀ n ϵ N , n2 ≥ n

phương pháp quy nạp toán học

với n =  1 ⇔ 12 = 1 (đúng)

giả sử n2 ≥ n đúng với n = k ( k ϵ N) ⇔ k2 ≥ k (1)

ta cần chứng minh n2 ≥ n đúng với  n = k +  1 

thât vậy với n = k + 1 , k ϵN ta có:

(k+1)2 - (k+1) = (k+1)(k+1 -1) =(k+ 1).k = k2 + k (2)

thay (1) vào (2) ta có : (k+1)2 - (k+1) = k2 + k ≥ 2k ≥ 0 vì (kϵN)

⇔ (k+1)2 ≥ k +1  

vậy n2 ≥ n ∀ n ϵ N (đpcm)

1 tháng 10 2019

∀ n ∈ Z: n ≤ n 2 . Mệnh đề đúng

AH
Akai Haruma
Giáo viên
3 tháng 12 2021

Bạn thay giá trị $x$ của từng đáp án vô xem $x^2-8$ có lớn hơn $4x$ không thì đáp án đó đúng

Đáp án $x=6$ (C)

3 tháng 12 2021

thank you

14 tháng 5 2017

Tồn tại số tự nhiên mà bình phương của nó bằng chính nó.

– Mệnh đề này đúng. Ví dụ: n = 0; n = 1.

NV
7 tháng 2 2021

\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\)

\(\Rightarrow AB=\dfrac{2S_{ABC}}{AC.sinA}=\dfrac{10\sqrt{3}}{3}\)

Áp dụng định lý hàm cos:

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=5,89\)

\(\Rightarrow AH=\dfrac{2S}{BC}=6,79\)

a: \(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5;-4\right)\\\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(-1;-5\right)\end{matrix}\right.\)

Vì -5:(-1)<>(-4):(-5) nên A,B,C không thẳng hàng

hay ΔABC nhọn

a: Điều kiện cần và đủ để n2 chia hết cho 5 là n chia hết cho 5

Vì nếu n chia hết cho 5 thì n=5k

\(n^2=25k^2=5\cdot5k^2⋮5\)

b: Điều kiện cần và đủ để n2 chia hết cho 5 là n2+1 không chia hết cho5 và n2-1 không chia hết cho 5

 

CÁC BẠN GIẢI JUP MIK VỚI !! :))Bài 1: Xét tính đúng sai của các mệnh đề sau:a) Phương trình có hai nghiệm phân biệt.b) 2k là số chẵn. (k là số nguyên bất kì)c) 211 – 1 chia hết cho 11.Bài 2: Cho tứ giác ABDC: Xét hai mệnh đềP: Tứ giác ABCD là hình vuông.Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng...
Đọc tiếp

CÁC BẠN GIẢI JUP MIK VỚI !! :))

Bài 1: Xét tính đúng sai của các mệnh đề sau:

a) Phương trình có hai nghiệm phân biệt.

b) 2k là số chẵn. (k là số nguyên bất kì)

c) 211 – 1 chia hết cho 11.

Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề

P: Tứ giác ABCD là hình vuông.

Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.

Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.

Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.

Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:

Bài tập mệnh đề toán học lớp 10

Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:

a) Tứ giác ABCD là hình chữ nhật.

b) 16 là số chính phương.

Bài tập mệnh đề toán học lớp 10

Bài 6: Cho tứ giác ABCD và hai mệnh đề:

P: Tổng 2 góc đối của tứ giác bằng 1800;

Q: Tứ giác nội tiếp được đường tròn.

Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.

Bài 7: Cho hai mệnh đề

P: 2k là số chẵn.

Q: k là số nguyên

Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.

Bài 8: Hoàn thành mệnh đề đúng:

Tam giác ABC vuông tại A nếu và chỉ nếu ...................

- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.

Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.

Bài tập mệnh đề toán học lớp 10

Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)

Bài tập mệnh đề toán học lớp 10

Bài 11: Phát biểu điều kiện cần và đủ để một:

  • Tam giác là tam giác cân.
  • Tam giác là tam giác đều.
  • Tam giác là tam giác vuông cân.
  • Tam giác đồng dạng với tam giác khác cho trước.
  • Phương trình bậc 2 có hai nghiệm phân biệt.
  • Phương trình bậc 2 có nghiệm kép.
  • Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.

Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.

Bài 13: Xét tính đúng sai của mệnh đề:

Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.

Bài 14: Phát biểu và chứng minh định lí sau:

a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.

b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.

(Chứng minh bằng phản chứng)

1

a: Mệnh đề sai

Vd: x=1 thì \(x^2=1< 4\)

b: Mệnh đề đúng

c: Mệnh đề đúng

d: Mệnh đề sai 

Vì \(x^2>4\) thì hoặc là x>2 hoặc cũng có thể là x<-2

2 tháng 6 2021

Mệnh đề trên SAI.

Rất đơn giản ta thử `x=1,y=2`

`x^4+y^2=5`

`x^2y+xy^3=2+8=10`

`<=>x^2y+xy^3>x^4+y^2`.

2 tháng 6 2021

còn cách nào nx ko ạ