Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có :(2^14:1024).2^x=128
=>(2^14:2^10).2^x=2^7
=>2^4.2^x=2^7
=>2^x=2^7:2^4
=>2^x=2^3
=>x=3
b) ta có: 3^x+3^x+1+3^x+2=117
=>3^x.(1+3+3^2)=117
=>3^x.13=117
=>3^x=9=3^2
=>x=2
c)ta có 2^x+2^x+1+2^x+2+2^x+3=480
=>2^x.(1+2+2^2+2^3)=480
=>2^x.15=480
=>2^x=480:15=32=2^5
=>x=5
d) ta có: 2^3.32>=2^n>16
=>2^3.2^5>=2^>2^4
=>2^8>=2^n>2^4
=>n=8;7;6;5
còn lại tương tự
h)16^n<32^4
=>(2^4)^n<(2^5)^4
=>2^4n<2^20
=>4n<20
=>n= 0;1;2;3;4
1: \(125^3\ge5^x>25^2\)
\(\Leftrightarrow5^4< 5^x\le5^9\)
mà x là số nguyên
nên \(x\in\left\{5;6;7;8;9\right\}\)
2: \(16^3\cdot2\ge2^x>8^3\)
\(\Leftrightarrow2^9< 2^x\le2^{12}\cdot2=2^{13}\)
mà x là số nguyên
nên \(x\in\left\{10;11;12;13\right\}\)
3: \(27^{15}< 3^x< 81^{10}\)
\(\Leftrightarrow3^{45}< x< 3^{40}\)(vô lý)
4: \(27^3\cdot3< 3^x< 243^3\)
\(\Leftrightarrow3^{10}< 3^x< 3^{15}\)
mà x là số nguyên
nên \(x\in\left\{11;12;13;14\right\}\)
a) ∀x ∈ R: x2>0= “Bình phương của một số thực là số dương”. Sai vì 0∈R mà 02=0.
b) ∃ n ∈ N: n2=n = “Có số tự nhiên n bằng bình phương của nó”. Đúng vì 1 ∈ N, 12=1.
c) ∀n ∈ N: n ≤ 2n = “Một số tự nhiên thì không lớn hơn hai lần số ấy”. Đúng.
d) ∃ x∈R: x<1/x = “Có số thực x nhỏ hơn nghịch đảo của nó”. Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <1/0,5.
a) ∀x ∈ R: x2>0= "Bình phương của một số thực là số dương". Sai vì 0∈R mà 02=0.
b) ∃ n ∈ N: n2=n = "Có số tự nhiên n bằng bình phương của nó". Đúng vì 1 ∈ N, 12=1.
c) ∀n ∈ N: n ≤ 2n = "Một số tự nhiên thì không lớn hơn hai lần số ấy". Đúng.
d) ∃ x∈R: x< = "Có số thực x nhỏ hơn nghịch đảo của nó". Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <.
a/ \(\Leftrightarrow\left(m^2-1\right)x< m^2-4m+3\)
\(\Leftrightarrow\left(m-1\right)\left(m+1\right)< m^2-4m+3\)
Để bpt vô nghiệm<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1=0\\m^2-4m+3\ne0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1=0\\m^2-4m+3\ne0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m=1\\m\ne1\\m\ne3\end{matrix}\right.\\\left\{{}\begin{matrix}m=-1\\m\ne1\\m\ne3\end{matrix}\right.\end{matrix}\right.\Rightarrow m=-1\)
Mấy câu dưới tương tự, cứ nhóm tất cả hạng tử có nhân tử chung là x vào và làm y như trên
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) ∃x ∈ Q: x2=2;= “Bình phương của một số hữu tỉ là một số khác 2”. Mệnh đề đúng.
c) ∀x ∈ R: x< x+1; = ∃x ∈ R: x≥x+1= “Tồn tại số thực x không nhỏ hơn số ấy cộng với 1”. Mệnh đề này sai.
d) ∃x ∈ R: 3x=x2+1; = ∀x ∈ R: 3x ≠ x2+1= “Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x”
Đây là mệnh đề sai
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
Xem thêm tại: http://loigiaihay.com/bai-7-trang-10-sgk-dai-so-10-c45a4787.html#ixzz45gTdKfVY