K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left[\left(x+y\right)+z\right]^2-x^2-y^2-z^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2-x^2-y^2-z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2\)

\(=2xy+2yz+2zx\)

\(=2\left(xy+yz+zx\right)\)

\(=VP\)

Vậy...

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

1 tháng 12 2017

Xin lỗi mk viết nhầm 

(x+y+z)2-x2-y2-z=x2+y2+z2+2(xy+yz+xz)-x2-y2-z2

1 tháng 12 2017

(x+y+z)2-x2-y2-z2

=x2+y2+2(xy+yz+xz)-x2-y2-z2

= 2(xy+yz+xz)

Vậy hằng đẳng thức được chứng minh

8 tháng 8 2017

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

5 tháng 3 2016

(x+y+z)= x2 + y2 + z+ 2(xy +yz +zx)

22 tháng 12 2018

Sửa đề \(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)

Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)(hằng đẳng thức cho  3 số )

\(\Rightarrow\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\left(đpcm\right)\)

Vậy

30 tháng 11 2017

Ta có:

VT= \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\) = VP

=> đpcm

30 tháng 11 2017

\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)

Biến đổi vế trái:

VT\(\)\(\)\(=\left[\left(x+y\right)+z\right]^2-x^2-y^2-z^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2-x^2-y^2-z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2\)\

\(=2xy+2yz+2zx\)

\(=2\left(xy+yz+zx\right)=\) VP

29 tháng 12 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Rightarrow\left\{{}\begin{matrix}1+\dfrac{x}{y}+\dfrac{x}{z}=0\\\dfrac{y}{x}+1+\dfrac{y}{z}=0\\\dfrac{z}{x}+\dfrac{z}{y}+1=0\end{matrix}\right.\\ \Rightarrow\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{z}{y}=-3\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Rightarrow\dfrac{yz+xz+xy}{xyz}=0\\ \Rightarrow yz+xz+xy=0\)

\(\Rightarrow\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\left(xy+xz+yz\right)=0\\ \Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}+\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{x}+\dfrac{z}{y}=0\\ \Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

13 tháng 12 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{-1}{z}\)

\(\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3=\left(\dfrac{-1}{z}\right)^3\)

\(\Leftrightarrow\dfrac{1}{x^3}+3\dfrac{1}{x^2}\dfrac{1}{y}+3\dfrac{1}{x}\dfrac{1}{y^2}+\dfrac{1}{y^3}=\dfrac{-1}{z^3}\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3.\dfrac{1}{x}\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3\dfrac{1}{x}\dfrac{1}{y}\dfrac{-1}{z}\)

\(\Leftrightarrow\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)xyz=3\dfrac{1}{x}\dfrac{1}{y}\dfrac{1}{z}.xyz\)

\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

20 tháng 12 2018

Ta có:

\(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)

\(=2xy+2yz+2zx\)

\(=2\left(xy+yz+zx\right)\)