Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: \(\left(xy+4\right)-\left(2x+2y\right)^2\)
\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)
\(=\left(y-2\right)\left(x-2\right)\left(y+2\right)\left(x+2\right)\)
f: \(x^2-4xy+3y^2\)
\(=x^2-xy-3xy+3y^2\)
\(=x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(x-y\right)\left(x-3y\right)\)
1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)
3) Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)
Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)
a, \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)( 1 )
Nhận xét : \(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\Rightarrow x^3+y^3=\left(x+y\right)^3-3x^2-3xy^2\)
Thay vào ( 1 ) ta có :
\(\left(x+y\right)^3+c^3-3x^2y-3xy^2-3xyz\)
\(=\left(z+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(z+y+z\right)\left(z^2+2xy+y^2-xz-yz+z^2\right)-3xyz\left(z+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(z^2+x^2+y^2-xy-yz-xz\right)\)
Vì theo đầu bài ta có: \(x+y+z=0\)nên ta có ( DPCM ) ..... học cho tốt nhé!
a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)
\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\left(1\right)\\y^2+z^2\ge2yz\left(2\right)\\z^2+x^2\ge2zx\left(3\right)\end{cases}}\)
Cộng (1) , (2) , (3) theo vế được ; \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
2) Áp dụng câu trên được : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Tương tự : \(\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)
Vậy \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
3) Đề đúng phải là : \(x^4-2x^3+2x^2-2x+1\ge0\)
Ta có : \(x^4-2x^3+2x^2-2x+1\ge0\left(1\right)\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)\ge0\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)(Luôn đúng)
Do đó (1) được chứng minh.
a) Ta có: \(VP=x^2+y^2+z^2-2xy+2yz-2zx\)
\(=\left(x^2-xy-xz\right)+\left(y^2-xy+yz\right)+\left(z^2-yz-zx\right)\)
\(=x\left(x-y-z\right)+y\left(y-x+z\right)+z\left(z-y-x\right)\)
\(=x\left(x-y-z\right)-y\left(x-y-z\right)-z\left(x-y-z\right)\)
\(=\left(x-y-z\right)\left(x-y-z\right)\)
\(=\left(x-y-z\right)^2=VT\)(đpcm)
b) Ta có: \(VP=x^2+y^2+z^2+2xy-2yz-2zx\)
\(=\left(x^2+xy-zx\right)+\left(y^2+xy-2yz\right)+\left(z^2-yz-zx\right)\)
\(=x\left(x+y-z\right)+y\left(x+y-z\right)+z\left(z-y-x\right)\)
\(=\left(x+y-z\right)\left(x+y\right)-z\left(x+y-z\right)\)
\(=\left(x+y-z\right)\left(x+y-z\right)\)
\(=\left(x+y-z\right)^2=VT\)(đpcm)
c) Ta có: \(VP=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)=VT\)(đpcm)
d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5=VP\)(đpcm)
a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)
\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2-2zx-2yz+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
Biến đổi tương đương nhé bạn.
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)