K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

VT = \(\frac{1-cosx+cos2x}{sin2x-sin}\)

= \(\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)

= \(\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}\)

= cotx = VP ( đpcm )

24 tháng 6 2020

mình cảm ơn ạ

9 tháng 6 2020

\(\frac{\left(sin^2x\right)^2-\left(cos^2x\right)^2}{2sinxcosx}\)=\(\frac{\left(sin^2x+cos^2x\right).\left(sin^2x-cos^2x\right)}{2sinxcosx}\)=\(\frac{1.\left(sin^2x-cos^2x\right)}{2sinxcosx}\)=\(\frac{sin^2x-cos^2x}{sin2x}\)=\(\frac{\frac{1-cos2x}{2}-\frac{1+cos2x}{2}}{sin2x}\)=\(\frac{1-1-cos2x-cos2x}{2}.\frac{1}{sin2x}\)=\(\frac{-2cos2x}{2sin2x}=\frac{-cos2x}{sin2x}=-cot2x\left(đpcm\right)\)

9 tháng 6 2020

9 tháng 6 2020

27 tháng 10 2018

Đáp án D

29 tháng 12 2022

\(3\overrightarrow{AP}-2\overrightarrow{AC}=\overrightarrow{0}\)

\(VT=3\left(\overrightarrow{AD}+\overrightarrow{DP}\right)-2\left(\overrightarrow{AD}+\overrightarrow{DC}\right)\)

\(=3\overrightarrow{AD}+3\overrightarrow{DP}-2\overrightarrow{AD}-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\overrightarrow{DP}-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\left(\overrightarrow{DC}+\overrightarrow{CP}\right)-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\overrightarrow{DC}+3\overrightarrow{CP}-2\overrightarrow{DC}\)

\(=\widehat{AD}+\overrightarrow{DC}+3.\dfrac{2}{3}\overrightarrow{CO}\)

\(=\overrightarrow{AD}+\overrightarrow{DC}+2.\dfrac{1}{2}\overrightarrow{CA}\)

\(=\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CA}\)

\(=\overrightarrow{AC}+\overrightarrow{CA}\)

\(=\overrightarrow{AA}=\overrightarrow{0}=VP\) (điều phải chứng minh)

NV
16 tháng 3 2022

\(sin^6a+cos^6a=\left(sin^2a\right)^3+\left(cos^2a\right)^3\)

\(=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=1-3sin^2a.cos^2a\)

9 tháng 11 2018

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

25 tháng 3 2021

d, \(\dfrac{\left(sinx+cosx\right)^2-1}{2cotx-sin2x}=tan^2x\)

\(\Leftrightarrow\dfrac{sin^2x+cos^2x+2sinx.cosx-1}{2cotx-sin2x}=tan^2x\)

\(\Leftrightarrow2sinx.cosx=tan^2x\left(2cotx-sin2x\right)\)

\(\Leftrightarrow2sinx.cosx=\dfrac{sin^2x}{cos^2x}\left(2\dfrac{cosx}{sinx}-2sinx.cosx\right)\)

\(\Leftrightarrow sinx.cosx=\dfrac{sinx}{cosx}-\dfrac{sin^3x}{cosx}\)

\(\Leftrightarrow sinx.cos^2x=sinx-sin^3x\)

\(\Leftrightarrow sinx.cos^2x=sinx\left(1-sin^2x\right)\)

\(\Leftrightarrow sinx.cos^2x=sinx.cos^2x\)

\(\Rightarrowđpcm\)

25 tháng 3 2021

a, \(\left(1-sin^2x\right).tan^2x+\left(1-cos^2x\right).cot^2x=1\)

\(\Leftrightarrow cos^2x.\dfrac{sin^2x}{cos^2x}+sin^2x.\dfrac{cos^2x}{sin^2x}=1\)

\(\Leftrightarrow sin^2x+cos^2x=1\)

\(\Rightarrowđpcm\)

b, \(1-sin^2x-sin^2x.cot^2x=0\)

\(\Leftrightarrow cos^2x-cos^2x=0\)

\(\Rightarrowđpcm\)

c, \(cos^4x+sin^2x.cos^2x+sin^2x=1\)

\(\Leftrightarrow\left(cos^2x+sin^2x\right).cos^2x+sin^2x=1\)

\(\Leftrightarrow cos^2x+sin^2x=1\)

\(\Rightarrowđpcm\)

NV
4 tháng 4 2022

\(=1-\dfrac{sin^2x}{1+\dfrac{cosx}{sinx}}-\dfrac{cos^2x}{1+\dfrac{sinx}{cosx}}=1-\dfrac{sin^3x}{sinx+cosx}-\dfrac{cos^3x}{sinx+cosx}\)

\(=1-\dfrac{sin^3x+cos^3x}{sinx+cosx}=1-\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}\)

\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)