K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

phải có điều kiện nữa chứ

hình như sai đề goy

chắc là (a/b)+(b/a)>= 2 đó bn

17 tháng 4 2016

coi ghi đề nhằm rồi đó

DD
5 tháng 8 2021

Ta có: 

\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow a^2+b^2+2ab+\left(\frac{ab+1}{a+b}\right)^2\ge2\left(ab+1\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a+b\right).\frac{ab+1}{a+b}+\left(\frac{ab+1}{a+b}\right)^2\ge0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng, ta ta biến đổi tương đương nên bất đẳng thức ban đầu cũng đúng. 

Ta có đpcm. 

2 tháng 1 2019

\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ca+bc}\ge\left(Schwarz\right)\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà theo Cô-si ta có:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) (hằng đẳng thức)

\(\Rightarrow VT\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c

2 tháng 1 2019

cảm ơn hihi

14 tháng 11 2016

b)áp dụng Bđt cô si

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)\(\Rightarrow-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge-6\)

\(\Rightarrow P\ge2+\left(-5\right)+5=1\)

Dấu = khi x=y

14 tháng 11 2016

a)Áp dụng Bđt Cô si ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)

Dấu = khi \(x=y\)

 

 

 

2 tháng 1 2019

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Ta c/m BĐT phụ: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)( b tự c/m nhé. Chuyển vế, c/m VP>=0 là xong )

\(\Rightarrow\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

                                               đpcm

2 tháng 1 2019

Có thể c/m luôn giùm bđt phụ không ạ?

30 tháng 3 2018

Áp dụng bất đẳng thức AM-GM:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\sqrt{\frac{a^2}{c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)

Chứng minh tương tự: \(\hept{\begin{cases}\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\\\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\end{cases}}\)

Cộng theo vế: \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

Dấu "=" khi \(a=b=c\)