K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)

\(\Leftrightarrow\frac{a+b-2\sqrt{ab}}{2}\ge0\)

\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\) (luôn đúng)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\)

\(\Leftrightarrow\sqrt{ab}\ge\frac{2ab}{a+b}\)

\(\Leftrightarrow\sqrt{ab}\ge\frac{2\sqrt{ab}^2}{a+b}\)

\(\Leftrightarrow\frac{2\sqrt{ab}}{a+b}\le1\)

\(\Leftrightarrow\frac{2\sqrt{ab}}{a+b}-1\le0\)

\(\Leftrightarrow\frac{2\sqrt{ab}-a-b}{a+b}\le0\)

\(\Leftrightarrow\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{a+b}\le0\) (luôn đúng)

Vậy \(\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\) (2)

Từ (1) ; (2) \(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\) (đpcm)

17 tháng 4 2016

phải có điều kiện nữa chứ

hình như sai đề goy

chắc là (a/b)+(b/a)>= 2 đó bn

17 tháng 4 2016

coi ghi đề nhằm rồi đó

18 tháng 7 2017

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

16 tháng 4 2020

\(\frac{a^2+b^2}{2}\ge ab\)(1)

<=> \(a^2+b^2\ge2ab\)

<=> \(a^2+b^2-2ab\ge0\)

<=> \(\left(a-b\right)^2\ge0\)đúng với a, b bất kì 

Vậy (1) đúng với mọi a, b  bất kì