Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phải có điều kiện nữa chứ
hình như sai đề goy
chắc là (a/b)+(b/a)>= 2 đó bn
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ca+bc}\ge\left(Schwarz\right)\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà theo Cô-si ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) (hằng đẳng thức)
\(\Rightarrow VT\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c
\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{3}{2}+1+1+1\)
\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\left(^∗\right)\)
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\\\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\end{cases}}\)
Nhân vế của các bđt ta được :
\(VT\left(^∗\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\cdot3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\)a + b + c = \(\frac{x+y+z}{2}\)
\(\Rightarrow a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
\(\Rightarrow C=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(C=\frac{1}{2}.\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\ge\frac{1}{2}\left(6-3\right)=\frac{3}{2}\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Ta c/m BĐT phụ: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)( b tự c/m nhé. Chuyển vế, c/m VP>=0 là xong )
\(\Rightarrow\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
đpcm
Ta có:
\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
\(\Leftrightarrow a^2+b^2+2ab+\left(\frac{ab+1}{a+b}\right)^2\ge2\left(ab+1\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a+b\right).\frac{ab+1}{a+b}+\left(\frac{ab+1}{a+b}\right)^2\ge0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\)
Bất đẳng thức cuối luôn đúng, ta ta biến đổi tương đương nên bất đẳng thức ban đầu cũng đúng.
Ta có đpcm.
Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:
\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\) (1)
CMTT ta được
\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\) (2)
\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\) (3)
Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\) (*)
Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:
\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)
Thay vào pt (*) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)
k tớ nha !!!
Áp dụng bất đẳng thức AM-GM:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\sqrt{\frac{a^2}{c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)
Chứng minh tương tự: \(\hept{\begin{cases}\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\\\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\end{cases}}\)
Cộng theo vế: \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu "=" khi \(a=b=c\)
Áp dụng BĐT Bunyakovsky dạng phân thức ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ca+cb}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+bc+bc+ca+ca+ab}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{\frac{2\left(a+b+c\right)^2}{3}}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c