Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)
Lời giải:
Ký hiệu $\text{BSn}$ là bội số của số $n$
CM $A\vdots 7$
Ta có:
$36^{38}-1=(35+1)^38}-1=\text{BS35}+1-1=\text{BS35}=\text{BS7}\vdots 7$
$41^{43}+1=(42-1)^{43}+1=\text{BS42}-1+1=\text{BS42}=\text{BS7}\vdots 7$
Cộng theo vế:
$A=36^{38}+41^{43}\vdots 7(*)$
CM $A\vdots 11$
\(36^{38}-3^{38}=(33+3)^{38}-3^{38}=\text{BS33}+3^{38}-3^{38}=\text{BS33}=\text{BS11}\vdots 11\)
\(41^{43}+3^{43}=(44-3)^{43}+3^{43}=\text{BS44}-3^{43}+3^{43}=\text{BS44}=\text{BS11}\vdots 11\)
Cộng theo vế:
\(A+3^{43}-3^{38}\vdots 11\)
\(\Leftrightarrow A+3^{38}(3^5-1)\vdots 11\Leftrightarrow A+242.3^{38}\vdots 11\)
Mà $242.3^{38}=11.22.3^{38}\vdots 11$ nên $A\vdots 11(**)$
Từ $(*); (**)$ mà $(7,11)=1$ nên $A\vdots 77$ (đpcm)
36^38+41^33
= 36^33 . 36^5 + 41^33
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33
= 36^33(36^5+ 1) - (36^33 - 41^33)
= 77.Q1 - 77.Q2
=> chia hết cho 77
Ta có :
\(36^{38}=\left(7.5+1\right)^{38}\) đồng dư với 1 (mod 7)
\(41^{43}=\left(7.6-1\right)^{43}\)đồng dư với - 1(mod 7)
\(\Rightarrow36^{38}+41^{43}\)đồng dư với 0 (mod 7)
Hay \(36^{38}+41^{43}\) chia hết cho 7 (1)
Ta cũng có :
\(36^{38}=\left(3.11+3\right)^{38}\) đồng dư với \(3^{38}\) (mod 11)
\(41^{43}=\left(44-3\right)^{43}\) đồng dư với \(-3^{43}\) (mod 11)
\(\Rightarrow36^{38}+41^{43}\)đồng dư với \(3^{38}-3^{43}\) (mod 11)
Ta thấy : \(3^{38}-3^{43}=3^{38}\left(1-3^5\right)=3^{38}.\left(-242\right)=3^{38}.11.\left(-22\right)⋮11\)
\(\Rightarrow36^{38}+41^{43}\) chia hết cho 11 (2)
Mà (7;11) = 1 Nên từ (1) ; (2) => \(36^{38}+41^{43}⋮77\) (đpcm)
a) Sai đề.
b) \(9^{34}-27^{22}+81^{16}\)
\(=3^{68}-3^{66}+3^{64}\)
\(=3^{64}\left(3^4-3^2+1\right)=3^{64}.73=3^{62}.9.73\)
= \(3^{62}.657⋮657\)
\(8^{15}-2^{43}+2^{41}=\left(2^3\right)^{15}-2^{43}+2^{41}\)
\(=2^{45}-2^{43}+2^{41}=2^{41}\left(16-4+1\right)=2^{41}.13⋮13\)
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 ( ĐPCM )
Ta có:
A=(41+42)+(43+44)+...+(499+4100)
A=4.(1+4)+43.(1+4)+...+499.(1+4)
A=4.5+43.5+...+499.5
A=5.(4+43+...+499)
=>A chia hết cho 5
bài này tớ đã biết nhưng chỉ thử các bạn thôi... cám ơn nhiều nha